On the Qualitative Behavior of Third-Order Differential Equations with a Neutral Term

被引:5
作者
Bazighifan, Omar [1 ,2 ]
Mofarreh, Fatemah [3 ]
Nonlaopon, Kamsing [4 ]
机构
[1] Int Telemat Univ Uninettuno, Sect Math, Corso Vittorio Emanuele II 39, I-00186 Rome, Italy
[2] Hadhramout Univ, Fac Sci, Dept Math, Hadhramout 50512, Yemen
[3] Princess Nourah Bint Abdulrahman Univ, Fac Sci, Math Sci Dept, Riyadh 11546, Saudi Arabia
[4] Khon Kaen Univ, Fac Sci, Dept Math, Khon Kaen 40002, Thailand
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 07期
关键词
oscillation; third order; neutral coefficients; differential equation; OSCILLATION CRITERIA;
D O I
10.3390/sym13071287
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we analyze the asymptotic behavior of solutions to a class of third-order neutral differential equations. Using different methods, we obtain some new results concerning the oscillation of this type of equation. Our new results complement related contributions to the subject. The symmetry plays a important and fundamental role in the study of oscillation of solutions to these equations. An example is presented in order to clarify the main results.
引用
收藏
页数:14
相关论文
共 22 条
[1]  
Agarwal R. P., 2002, Oscillation Theory for Second Order Dynamic Equations
[2]   OSCILLATION OF THIRD-ORDER NONLINEAR DELAY DIFFERENTIAL EQUATIONS [J].
Agarwal, Ravi P. ;
Bohner, Martin ;
Li, Tongxing ;
Zhang, Chenghui .
TAIWANESE JOURNAL OF MATHEMATICS, 2013, 17 (02) :545-558
[3]  
Agarwal RP., 2003, OSCILLATION THEORY 2
[4]  
Bainov D. D., 1991, OSCILLATION THEORY N
[6]   Improved Conditions for Oscillation of Functional Nonlinear Differential Equations [J].
Bazighifan, Omar ;
Postolache, Mihai .
MATHEMATICS, 2020, 8 (04)
[7]   On nonexistence of Kneser solutions of third-order neutral delay differential equations [J].
Dzurina, J. ;
Grace, S. R. ;
Jadlovska, I .
APPLIED MATHEMATICS LETTERS, 2019, 88 (193-200) :193-200
[8]   Oscillation Criteria for a Class of Third-Order Damped Neutral Differential Equations [J].
Elabbasy, Elmetwally M. ;
Qaraad, Belgees ;
Abdeljawad, Thabet ;
Moaaz, Osama .
SYMMETRY-BASEL, 2020, 12 (12) :1-12
[9]   On the oscillation of certain third order nonlinear functional differential equations [J].
Grace, Said R. ;
Agarwal, Ravi P. ;
Pavani, Raffaella ;
Thandapani, E. .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 202 (01) :102-112
[10]  
Graef JR, 2017, OPUSC MATH, V37, P839, DOI 10.7494/OpMath.2017.37.6.839