Underwater Acoustic Communications Based on OTFS

被引:14
作者
Feng, Xiao [1 ]
Esmaiel, Hamada [1 ,2 ]
Wang, Junfeng [3 ]
Qi, Jie [1 ]
Zhou, Mingzhang [1 ]
Qasem, Zeyad A. H. [1 ]
Sun, Haixin [1 ]
Gu, Yaping [4 ]
机构
[1] Xiamen Univ, Sch Informat, Xiamen, Peoples R China
[2] Aswan Univ, Fac Engn, Aswan, Egypt
[3] Tianjin Univ Technol, Sch Elect & Elect Engn, Tianjin, Peoples R China
[4] Chinese Acad Sci, Shanghai Acoust Lab, Shanghai, Peoples R China
来源
PROCEEDINGS OF 2020 IEEE 15TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP 2020) | 2020年
基金
中国国家自然科学基金;
关键词
OTFS; underwater acoustic communication; double dispersive channel; delay-Doppler domain;
D O I
10.1109/ICSP48669.2020.9320923
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The orthogonal time frequency space (OTFS) modulating and demodulating signal in delay-Doppler domain alleviates the multipath delay spread and Doppler spread effects simultaneously. The traditional underwater acoustic communications (UACs) do not work well, since underwater acoustic channels have inherently double dispersive characteristics (i.e., multipath propagation and ubiquitously relative mobility). In order to eliminate or reduce the effects of double dispersion existing in the underwater scenarios, this paper proposes an OTFS-based UAC scheme. We first present the background for signal preprocessing and post-processing steps of the OTFS scheme, and then introduce the OTFS-based UACs in detail. Moreover, we verify the proposed scheme can obtain the reliable performance through simulation analysis. Finally, simulation results show that the OTFS-based UAC scheme outperforms the OFDM and DFT-s-OFDM in time-varying multipath underwater acoustic channel.
引用
收藏
页码:439 / 444
页数:6
相关论文
共 18 条
[1]  
[Anonymous], 2009, 2009 IEEE 13 DIG SIG, P138
[2]  
[Anonymous], 2007, PROC OCEANS 2007 EUR
[3]  
Bergmann CP, 2011, PROTECTION AGAINST EROSIVE WEAR USING THERMAL SPRAYED CERMET: A REVIEW, P1, DOI 10.1007/978-3-642-21987-0
[4]   A New Modulation Technique for Doppler Compensation in Frequency-Dispersive Channels [J].
Dean, Thomas ;
Chowdhury, Mainak ;
Goldsmith, Andrea .
2017 IEEE 28TH ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR, AND MOBILE RADIO COMMUNICATIONS (PIMRC), 2017,
[5]   Doppler-Resilient Orthogonal Signal-Division Multiplexing for Underwater Acoustic Communication [J].
Ebihara, Tadashi ;
Leus, Geert .
IEEE JOURNAL OF OCEANIC ENGINEERING, 2016, 41 (02) :408-427
[6]  
Hadani R, 2017, IEEE MTT S INT MICR, P677
[7]  
Hadani R, 2017, IEEE WCNC
[8]   HMGB1 in health and disease [J].
Kang, Rui ;
Chen, Ruochan ;
Zhang, Qiuhong ;
Hou, Wen ;
Wu, Sha ;
Cao, Lizhi ;
Huang, Jin ;
Yu, Yan ;
Fan, Xue-gong ;
Yan, Zhengwen ;
Sun, Xiaofang ;
Wang, Haichao ;
Wang, Qingde ;
Tsung, Allan ;
Billiar, Timothy R. ;
Zeh, Herbert J., III ;
Lotze, Michael T. ;
Tang, Daolin .
MOLECULAR ASPECTS OF MEDICINE, 2014, 40 :1-116
[9]   Multicarrier Communication Over Underwater Acoustic Channels With Nonuniform Doppler Shifts [J].
Li, Baosheng ;
Zhou, Shengli ;
Stojanovic, Milica ;
Freitag, Lee ;
Willett, Peter .
IEEE JOURNAL OF OCEANIC ENGINEERING, 2008, 33 (02) :198-209
[10]   MIMO-OFDM for High-Rate Underwater Acoustic Communications [J].
Li, Baosheng ;
Huang, Jie ;
Zhou, Shengli ;
Ball, Keenan ;
Stojanovic, Milica ;
Freitag, Lee ;
Willett, Peter .
IEEE JOURNAL OF OCEANIC ENGINEERING, 2009, 34 (04) :634-644