An efficient technique for improving methanol yield using dual CO2 feeds and dry methane reforming

被引:17
作者
Su, Yang [1 ]
Lu, Liping [2 ]
Shen, Weifeng [1 ]
Wei, Shun'an [1 ]
机构
[1] Chongqing Univ, Sch Chem & Chem Engn, Chongqing 400044, Peoples R China
[2] Yangtze Normal Univ, Sch Chem & Chem Engn, Chongqing 408100, Peoples R China
基金
中国国家自然科学基金;
关键词
methanol synthesis; CO2; utilization; dry methane reforming; steam methane reforming; process design; WATER-GAS SHIFT; CARBON-DIOXIDE; NATURAL-GAS; STEAM; SYNGAS; CONVERSION; CU/ZNO/AL2O3; PERFORMANCE; CATALYSTS; MEMBRANE;
D O I
10.1007/s11705-019-1849-5
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Steam methane reforming (SMR)-based methanol synthesis plants utilizing a single CO2 feed represent one of the predominant technologies for improving methanol yield and CO2 utilization. However, SMR alone cannot achieve full CO2 utilization, and a high water content accumulates if CO2 is only fed into the methanol reactor. In this study, a process integrating SMR with dry methane reforming to improve the conversion of both methane and CO2 is proposed. We also propose an innovative methanol production approach in which captured CO2 is introduced into both the SMR process and the recycle gas of the methanol synthesis loop. This dual CO2 feed approach aims to optimize the stoichiometric ratio of the reactants. Comparative evaluations are carried out from a techno-economic point of view, and the proposed process is demonstrated to be more efficient in terms of both methanol productivity and CO2 utilization than the existing stand-alone natural gas-based methanol process.
引用
收藏
页码:614 / 628
页数:15
相关论文
共 44 条
[1]   Natural gas to synthesis gas - Catalysts and catalytic processes [J].
Aasberg-Petersen, K. ;
Dybkjaer, I. ;
Ovesen, C. V. ;
Schjodt, N. C. ;
Sehested, J. ;
Thomsen, S. G. .
JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2011, 3 (02) :423-459
[2]  
Abashar MEE, 2004, INT J HYDROGEN ENERG, V29, P799, DOI [10.1016/j.ijhydene.2003.09.010, 10.1016/j.jjhydene.2003.09.010]
[3]   Catalyst design for dry reforming of methane: Analysis review [J].
Aramouni, Nicolas Abdel Karim ;
Touma, Jad G. ;
Abu Tarboush, Belal ;
Zeaiter, Joseph ;
Ahmad, Mohammad N. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 82 :2570-2585
[4]   Steady-state kinetics and mechanism of methane reforming with steam and carbon dioxide over Ni catalyst [J].
Avetisov, A. K. ;
Rostrup-Nielsen, J. R. ;
Kuchaev, V. L. ;
Hansen, J. -H. Bak ;
Zyskin, A. G. ;
Shapatina, E. N. .
JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2010, 315 (02) :155-162
[5]   Methane Conversion to Syngas for Gas-to-Liquids (GTL): Is Sustainable CO2 Reuse via Dry Methane Reforming (DMR) Cost Competitive with SMR and AIR Processes? [J].
Baltrusaitis, Jonas ;
Luyben, William L. .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2015, 3 (09) :2100-2111
[6]   Economic feasibility of methanol synthesis as a method for CO2 reduction and energy storage [J].
Bellotti, D. ;
Rivarolo, M. ;
Magistri, L. .
INNOVATIVE SOLUTIONS FOR ENERGY TRANSITIONS, 2019, 158 :4721-4728
[7]  
Biedermann P, 2006, METHANOL ENERGY CARR, P14
[8]  
Cahete B, 2018, COMPUTER AIDED CHEM, P151
[9]   Synthesis Gas Processes for Methanol Production via CH4 Reforming with CO2, H2O, and O2 [J].
Canete, Benjamin ;
Gigola, Carlos E. ;
Brignole, Nelida B. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2014, 53 (17) :7103-7112
[10]   Effect of temperature in the conversion of methanol to olefins (MTO) using an extruded SAPO-34 catalyst [J].
Castellanos-Beltran, Ignacio Jorge ;
Assima, Gnouyaro Palla ;
Lavoie, Jean-Michel .
FRONTIERS OF CHEMICAL SCIENCE AND ENGINEERING, 2018, 12 (02) :226-238