Standard uncertainty of angular positions and statistical quality of step-scan intensity data

被引:14
|
作者
Rebmann, C [1 ]
Ritter, H [1 ]
Ihringer, J [1 ]
机构
[1] Univ Tubingen, Inst Kristallog, D-72070 Tubingen, Germany
来源
ACTA CRYSTALLOGRAPHICA SECTION A | 1998年 / 54卷
关键词
D O I
10.1107/S0108767397013391
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In step-scan diffraction measurements, the diffraction angle 2 theta is an observation with standard uncertainty u(2 theta). By the law of uncertainty propagation, u(2 theta), typically 0.001 < u(2 theta) < 0.004 degrees, affects the standard uncertainty u(total)(y) of the intensity y at each step 2 theta(i), depending on the local slope y'(i) = dy/d(2 theta)\(2 theta i) by u(total)(2)(y(i)) = u(Poisson)(2) + [y'(i)u(2 theta)](2), where u(Poisson) = (y(i))(1/2) is the conventional Poisson statistics. For the intensity y at 2 theta of steepest slope, u(total)(y) is given by u(total)(2)(y) = u(Poisson)(2)(1 + v(2)), where v = 2u(2 theta)y(0)(1/2)/h is the ratio of y'(i)u(2 theta) and u(Poisson) y(0) is the peak intensity and h the full :width at half-maximum of the profile. The error of the intensities at individual steps modifies also the standard uncertainty of the integrated intensity: u(total)(2)(Int) = u(Poisson)(2) (Int)(1 + v(2)/2). As v depends on y(0)(1/2)/h, it is evident that the importance of the correction increases with increasing count rates and decreasing line width. In most practical cases, y'(i)u(2 theta) contributes a multiple of Poisson statistics to the standard uncertainty of intensity. It will be shown that with a realistic weighting scheme the chi(2) as well as the Durbin-Watson test become more meaningful.
引用
收藏
页码:225 / 231
页数:7
相关论文
共 13 条
  • [1] Multivariate curve resolution of step-scan FTIR spectral data
    Ruckebusch, C
    Duponchel, L
    Huvenne, JP
    Saurina, J
    VIBRATIONAL SPECTROSCOPY, 2004, 35 (1-2) : 21 - 26
  • [2] Improvement in data acquisition for a step-scan Fourier transform spectrometer
    Chin, TL
    Lin, KC
    APPLIED SPECTROSCOPY, 1999, 53 (01) : 22 - 28
  • [3] INTERFEROGRAM SYMMETRIZATION AND MULTIPLICATIVE PHASE CORRECTION OF RAPID-SCAN AND STEP-SCAN PHOTOACOUSTIC FT-IR DATA
    MICHAELIAN, KH
    INFRARED PHYSICS, 1989, 29 (01): : 87 - 100
  • [4] LIMITED-RANGE STEP-SCAN METHOD FOR COLLECTING X-RAY-DIFFRACTION DATA
    HANSON, JC
    WATENPAUGH, KD
    SIEKER, L
    JENSEN, LH
    ACTA CRYSTALLOGRAPHICA SECTION A, 1979, 35 (JUL): : 616 - 621
  • [5] ESTIMATED STANDARD DEVIATION OF A STEP-SCAN-MEASURED BRAGG REFLECTION INTENSITY
    LEHMANN, MS
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1975, 8 (DEC1) : 619 - 622
  • [6] The next step in volume scan diagnosis: Standard fail data format
    Leininger, Andreas
    Khoche, Ajay
    Fischer, Martin
    Tamarapalli, Nagesh
    Cheng, Wu-Tung
    Klingenberg, Randy
    Yang, Wu
    PROCEEDINGS OF THE 15TH ASIAN TEST SYMPOSIUM, 2006, : 360 - +
  • [7] A METHOD FOR COLLECTION OF STEP-SCAN DATA ON A CAD4 DIFFRACTOMETER - HOMOGENEITY OF THE MONOCHROMATED PRIMARY X-RAY-BEAM
    BIRKNES, B
    HANSEN, LK
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1983, 16 (FEB) : 11 - 13
  • [8] Comparison of Interval Analysis and Standard Statistical Methods for Estimating Experimental Data with Uncertainty
    Kumkov, S. I.
    Jaulin, L.
    MEASUREMENT TECHNIQUES, 2019, 62 (02) : 105 - 110
  • [9] Comparison of Interval Analysis and Standard Statistical Methods for Estimating Experimental Data with Uncertainty
    S. I. Kumkov
    L. Jaulin
    Measurement Techniques, 2019, 62 : 105 - 110
  • [10] Assessing the pelerformance of standard methods to predict the standard uncertainty of air quality data having incomplete time coverage
    Brown, Richard J. C.
    Harris, Peter M.
    Cox, Maurice G.
    ENVIRONMENTAL SCIENCE-PROCESSES & IMPACTS, 2014, 16 (07) : 1700 - 1704