Low-temperature all-solid-state lithium-ion batteries based on a di-cross-linked starch solid electrolyte

被引:35
作者
Lin, Zehua [1 ]
Liu, Jin [1 ]
机构
[1] Cent S Univ, Sch Met & Environm, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
POLYMER ELECTROLYTES; NMR; CONDUCTIVITY; TRANSPORT; MEMBRANE; BORON; PERFORMANCE; DYNAMICS; KINETICS; PROGRESS;
D O I
10.1039/c9ra07781b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The preparation of a low-temperature solid electrolyte is a challenge for the commercialization of the all-solid-state lithium-ion battery (ASSLIB). Here we report a starch-based solid electrolyte that displays phenomenal electrochemical properties below room temperature (RT). The starch host of the electrolyte is synthesized by two cross-linking reactions, which provide sufficient and orderly binding sites for the lithium salt to dissolve. At 25 degrees C, the solid electrolyte has exceptional ionic conductivity (sigma, 3.10 x 10(-4) S cm(-1)), lithium-ion transfer number (t(+), 0.82) and decomposition potential (dP, 4.91 V). At -20 degrees C, it still has outstanding sigma (3.10 x 10(-5) S cm(-1)), t(+) (0.72) and dP (5.50 V). The LiFePO4 ASSLIB assembled with the electrolyte exhibits unique specific capacity and long cycling life below RT, and the LiNi0.8Co0.1Mn0.1O2 ASSLIB can operate at 4.3 V and 0 degrees C. This work provides a solution to solve the current challenges of ASSLIBs to widen their scope of applications.
引用
收藏
页码:34601 / 34606
页数:6
相关论文
共 45 条
[1]   Safety mechanisms in lithium-ion batteries [J].
Balakrishnan, PG ;
Ramesh, R ;
Kumar, TP .
JOURNAL OF POWER SOURCES, 2006, 155 (02) :401-414
[2]   Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers [J].
Barbosa, VFF ;
MacKenzie, KJD ;
Thaumaturgo, C .
INTERNATIONAL JOURNAL OF INORGANIC MATERIALS, 2000, 2 (04) :309-317
[3]  
Bard A. J., 1980, ELECTROCHEMICAL METH, V2
[4]   Mechanism of ion transport in amorphous poly(ethylene oxide)/LiTFSI from molecular dynamics simulations [J].
Borodin, O ;
Smith, GD .
MACROMOLECULES, 2006, 39 (04) :1620-1629
[5]   NMR and NQR studies of boron in vitreous and crystalline berates [J].
Bray, PJ .
INORGANICA CHIMICA ACTA, 1999, 289 (1-2) :158-173
[6]   Performance limitations of polymer electrolytes based on ethylene oxide polymers [J].
Buriez, O ;
Han, YB ;
Hou, J ;
Kerr, JB ;
Qiao, J ;
Sloop, SE ;
Tian, MM ;
Wang, SG .
JOURNAL OF POWER SOURCES, 2000, 89 (02) :149-155
[7]   Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework [J].
Chen, Xinzhi ;
He, Wenjun ;
Ding, Liang-Xin ;
Wang, Suqing ;
Wang, Haihui .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (03) :938-944
[8]   Nanocomposite polymer electrolytes for lithium batteries [J].
Croce, F ;
Appetecchi, GB ;
Persi, L ;
Scrosati, B .
NATURE, 1998, 394 (6692) :456-458
[9]   A multifunctional polymer electrolyte enables ultra-long cycle-life in a high-voltage lithium metal battery [J].
Dong, Tiantian ;
Zhang, Jianjun ;
Xu, Gaojie ;
Chai, Jingchao ;
Du, Huiping ;
Wang, Longlong ;
Wen, Huijie ;
Zang, Xiao ;
Du, Aobing ;
Jia, Qingming ;
Zhou, Xinhong ;
Cui, Guanglei .
Energy and Environmental Science, 2018, 11 (05) :1197-1203
[10]   THE STRUCTURE OF SODA SILICA GLASSES - A MAS NMR-STUDY [J].
DUPREE, R ;
HOLLAND, D ;
MCMILLAN, PW ;
PETTIFER, RF .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 1984, 68 (2-3) :399-410