Structure of uniaxially aligned 13C labeled silk fibroin fibers with solid state 13C-NMR

被引:16
|
作者
Demura, M
Yamazaki, Y
Asakura, T [1 ]
Ogawa, K
机构
[1] Tokyo Univ Agr & Technol, Dept Biotechnol, Tokyo 184, Japan
[2] Katakura Ind Co Ltd, Res Inst Biol Sci, Dept Chem, Nagano 390, Japan
关键词
Bombyx mori silk fibroin fiber; C-13; labeling; solid state NMR; beta sheet structure; uniaxially oriented system;
D O I
10.1016/S0022-2860(97)00254-8
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Carbon-13 isotopic labeling of B. mori silk fibroin was achieved biosynthetically with [I-C-13] glycine in order to determine the carbonyl bond orientation angle of glycine sites with the silk fibroin. Angular dependence of C-13 solid State NMR spectra of uniaxially oriented silk fibroin fiber block sample due to the carbonyl C-13 chemical shift anisotropy was simulated according to the chemical shift transformation with Euler angles, alpha(F) and beta(F), from principal axis system (PAS) to fiber axis system (FAS). The another Euler angles, alpha(DCO) and beta(DCO), for transformation from PAS to the molecular symmetry axis were determined from the [1-C-13] glycine sequence model compounds for the silk fibroin. By the combination of these Euler angles, the carbonyl bond orientation angle with respect to FAS of the [1-C-13] glycine sites of the silk fibroin was determined to be 90 +/- 5 degrees. This value is in agreement with the X-ray diffraction and our previous solid state NMR data of B. mori silk fibroin fiber (a typical beta-pleated sheet) within experimental error. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:155 / 163
页数:9
相关论文
共 50 条
  • [21] Dynamic polarization of 13C nuclei in solid 13C labeled pyruvic acid
    Meyer, W.
    Heckmann, J.
    Hess, C.
    Radtke, E.
    Reicherz, G.
    Triebwasser, L.
    Wang, L.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2011, 631 (01): : 1 - 5
  • [22] Characterization of water in hydrated Bombyx mori silk fibroin fiber and films by 2H NMR relaxation and 13C solid state NMR
    Asakura, Tetsuo
    Isobe, Kotaro
    Kametani, Shunsuke
    Ukpebor, Obehi
    Silverstein, Moshe
    Boutis, Gregory
    ACTA BIOMATERIALIA, 2017, 50 : 322 - 333
  • [23] A solid-state 13C NMR analysis of ambers
    Martínez-Richa, A
    Vera-Graziano, R
    Rivera, A
    Joseph-Nathan, P
    POLYMER, 2000, 41 (02) : 743 - 750
  • [24] Solid state 13C NMR of nucleosides, nucleotides and RNA
    Ebrahimi, M
    Rossi, P
    Harbison, GS
    BIOPHYSICAL JOURNAL, 1998, 74 (02) : A289 - A289
  • [25] Protein solid-state NMR resonance assignments from (13C, 13C) correlation spectroscopy
    Seidel, K
    Lange, A
    Becker, S
    Hughes, CE
    Heise, H
    Baldus, M
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2004, 6 (22) : 5090 - 5093
  • [26] Solid State 13C NMR Study of Modified Polyhydroxybutyrate
    Vrabel, P.
    Hronsky, V.
    Fricova, O.
    Kovalakova, M.
    Chodak, I.
    Alexy, P.
    ACTA PHYSICA POLONICA A, 2014, 126 (01) : 419 - 420
  • [27] Homonuclear decoupled 13C chemical shift anisotropy in 13C doubly labeled peptides by selective-pulse solid-state NMR
    Hong, M
    Yao, XL
    JOURNAL OF MAGNETIC RESONANCE, 2003, 160 (02) : 114 - 119
  • [28] Variable-temperature 13C solid-state NMR study of the molecular structure of honeybee wax and silk
    Kameda, Tsunenori
    Tamada, Yasushi
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2009, 44 (01) : 64 - 69
  • [29] A 13C NMR study on the structural change of silk fibroin from Samia cynthia ricini
    Nakazawa, Y
    Nakai, T
    Kameda, T
    Asakura, T
    CHEMICAL PHYSICS LETTERS, 1999, 311 (05) : 362 - 366
  • [30] 13C-13C spin-coupling constants in crystalline 13C-labeled saccharides: conformational effects interrogated by solid-state 13C NMR spectroscopy
    Zhang, Wenhui
    Yoon, Mi-Kyung
    Meredith, Reagan J.
    Zajicek, Jaroslav
    Oliver, Allen G.
    Hadad, Matthew
    Frey, Michael H.
    Carmichael, Ian
    Serianni, Anthony S.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (42) : 23576 - 23588