Influence of Compositional Variation on Electrical Properties of PANI/SnO2 Nanocomposites

被引:0
|
作者
Chaturmukha, V. S. [1 ]
Avinash, B. S. [1 ]
Naveen, C. S. [1 ]
Rajeeva, M. P. [1 ]
Prasanna, G. D. [2 ]
Harish, B. M. [1 ]
Suresha, S. [1 ]
Jayanna, H. S. [1 ]
Lamani, Ashok R. [1 ]
机构
[1] Kuvempu Univ, Dept PG Studies & Res Phys, Shimoga 577451, Karnataka, India
[2] GMIT, Dept Engn Phys, Davangere 577006, Karnataka, India
来源
INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2015) | 2016年 / 1728卷
关键词
CONDUCTIVITY;
D O I
10.1063/1.4946399
中图分类号
O59 [应用物理学];
学科分类号
摘要
Conducting polyaniline/tin oxide (PANI/SnO2) nanocomposites have been successfully synthesized by in-situ polymerization technique. The PANI/SnO2 nanocomposites of different compositions were prepared by varying weight percentage of SnO2 nanoparticles such as 10 wt%, 20 wt%, 30 wt%, 40 wt% and 50 wt% into the fixed amount of the aniline monomer. The prepared powder samples were characterized by X-ray diffractometer (XRD), Fourier Transform Infrared spectroscopy (FT-IR) and Scanning electron microscope (SEM). The intensity of diffraction peaks for PANI/SnO2 composites is increases with increasing SnO2 wt%. SEM observation showed that the prepared SnO2 nanoparticles were uniformly dispersed and highly stabilized throughout the macromolecular chain that formed a uniform metal-polymer nanocomposite material. AC electrical conductivity and dielectric properties were studied in the frequency range of 1 KHz-1 MHz. At higher frequencies, the composites exhibit almost zero dielectric loss and maximum value of AC electrical conductivity (sigma(ac)) of 0.21 S/m is found for a concentration of 30 wt% of SnO2 in polyaniline.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Electrical properties and magnetoresistance of nanogranular SnO2 films
    Ksenevich, V. K.
    Dovzhenkoa, T. A.
    Dorosinets, V. A.
    Bashmakov, I. A.
    Melnikov, A. A.
    Wieck, A. D.
    ACTA PHYSICA POLONICA A, 2008, 113 (03) : 1043 - 1046
  • [32] Effect of SnO2 structure morphology on their electrical properties
    S. Nahirniak
    T. Dontsova
    M. Dusheiko
    P. Smertenko
    W. Kwapinski
    Journal of Materials Science: Materials in Electronics, 2020, 31 : 21934 - 21947
  • [33] Structural and photooxidation properties of SnO2/layer silicate nanocomposites
    Korösi, L
    Németh, J
    Dékány, I
    APPLIED CLAY SCIENCE, 2004, 27 (1-2) : 29 - 40
  • [34] SnO2 films:: formation, electrical and optical properties
    Gorley, PM
    Khomyak, VV
    Bilichuk, SV
    Orletsky, IG
    Horley, PP
    Grechko, VO
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2005, 118 (1-3): : 160 - 163
  • [35] Influence of the concentration of Sb2O3 on the electrical properties of SnO2 varistors
    Ciorcero, J. R.
    Pianaro, S. A.
    Bacci, G.
    Zara, A. J.
    Tebcherani, S. M.
    Longo, E.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2011, 22 (06) : 679 - 683
  • [36] Synthesis, characterization of SnO2 three-dimensional microbars decorated with nanostructures and electrical properties of PMMA-SnO2 nanocomposites
    Pethaperumal, Sindhuja
    Mohanraj, G. T.
    SURFACES AND INTERFACES, 2022, 30
  • [37] Modification of optical and electrical properties of SnO2 under the influence of argon ion beam
    Umnov, S.
    Asainov, O.
    Temenkov, V.
    5TH INTERNATIONAL CONGRESS ON ENERGY FLUXES AND RADIATION EFFECTS 2016, 2017, 830
  • [38] The influence of substrate temperature on electrical properties of Cu/CdS/SnO2 Schottky diode
    Tomakin, M.
    Altunbas, M.
    Bacaksiz, E.
    PHYSICA B-CONDENSED MATTER, 2011, 406 (23) : 4355 - 4360
  • [39] Influence of La2O3 on the electrical properties of dense SnO2 electrodes
    Wang, Qingwei
    Wang, Hongzhi
    Ning, Wei
    ADVANCED MATERIAL SCIENCE AND TECHNOLOGY, PTS 1 AND 2, 2011, 675-677 : 171 - +
  • [40] Influence of the concentration of Sb2O3 on the electrical properties of SnO2 varistors
    J. R. Ciórcero
    S. A. Pianaro
    G. Bacci
    A. J. Zara
    S. M. Tebcherani
    E. Longo
    Journal of Materials Science: Materials in Electronics, 2011, 22 : 679 - 683