Usefulness of non-linear EEG analysis

被引:0
|
作者
Micheloyannis, S [1 ]
Flitzanis, N
Papanikolaou, E
Bourkas, M
Terzakis, D
Arvanitis, S
Stam, CJ
机构
[1] Univ Crete, Div Med, Clin Neurophysiol L Widen Lab, GR-71409 Iraklion, Crete, Greece
[2] Univ Crete, Dept Phys, Iraklion, Greece
[3] Tech Sch Crete, Crete, NE USA
[4] Leyenburg Hosp, Neurophysiol Lab, NL-2545 CH The Hague, Netherlands
来源
ACTA NEUROLOGICA SCANDINAVICA | 1998年 / 97卷 / 01期
关键词
electroencephalography; spectral analysis; nonlinear dynamics; arithmetic;
D O I
暂无
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Spectral analysis methods are useful for the evaluation of EEG signals. Nevertheless, they refer only to the frequency domain and ignore any potentially interesting phase information. Analytical methods based upon the theory of nonlinear dynamics provides this and additional information. We used both methods to evaluate the EEG signals of volunteers performing two distinct mental arithmetic tasks. We extracted the power spectrum, the coherence and nonlinear parameters (dimension, the first Lyapunov exponent, the Kolmogorov entropy, the mutual dimension and the dimensions based upon spatial embedding of the original data as well as their surrogates). We found that 1) the spatial embedding dimension differed from that of the surrogates, indicating nonlinearity, 2) there were differences between the two arithmetic tasks, and 3) the spectral and nonlinear methods differ in terms of the information they provide. Our results indicate that nonlinear analysis methods can be useful despite the fact that they are still at an early stage of development.
引用
收藏
页码:13 / 19
页数:7
相关论文
共 50 条
  • [31] Non-linear analysis of emotion EEG: Calculation of Kolmogorov entropy and the principal Lyapunov exponent
    Aftanas, LI
    Lotova, NV
    Koshkarov, VI
    Pokrovskaja, VL
    Popov, SA
    Makhnev, VP
    NEUROSCIENCE LETTERS, 1997, 226 (01) : 13 - 16
  • [32] Diagnosis of attention deficit hyperactivity disorder using non-linear analysis of the EEG signal
    Boroujeni, Yasaman Kiani
    Rastegari, Ali Asghar
    Khodadadi, Hamed
    IET SYSTEMS BIOLOGY, 2019, 13 (05) : 260 - 266
  • [33] Non-linear dynamical analysis of the EEG in Alzheimer's disease with optimal embedding dimension
    Jeong, J
    Kim, SY
    Han, SH
    ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1998, 106 (03): : 220 - 228
  • [34] Electrocortical connectivity and non-linear quantitative analysis of EEG signal in PD-MCI
    Mostile, G.
    Giuliano, L.
    Monastero, R.
    Luca, A.
    Cicero, C. E.
    Donzuso, G.
    Dibilio, V.
    Baschi, R.
    Terranova, R.
    Sciacca, G.
    Sofia, V.
    Fierro, B.
    Zappia, M.
    Nicoletti, A.
    EUROPEAN JOURNAL OF NEUROLOGY, 2018, 25 : 517 - 517
  • [35] Analysis of P300 containing EEG through three Non-Linear Methods
    Ladd-Parada, J.
    Alvarado-Serrano, C.
    Gutierrez-Salgado, J. M.
    2014 11TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, COMPUTING SCIENCE AND AUTOMATIC CONTROL (CCE), 2014,
  • [36] Non-linear Analysis of Single Electroencephalography (EEG) for Sleep-Related Healthcare Applications
    Lee, Chung Ki
    Jo, Han Gue
    Yoo, Sun Kook
    HEALTHCARE INFORMATICS RESEARCH, 2010, 16 (01) : 46 - 51
  • [37] Non-linear time series analysis of intracranial EEG recordings in patients with epilepsy - an overview
    Lehnertz, K
    INTERNATIONAL JOURNAL OF PSYCHOPHYSIOLOGY, 1999, 34 (01) : 45 - 52
  • [38] Characterization of Memory Load in an Arithmetic Task using Non-Linear Analysis of EEG Signals
    Zarjam, Pega
    Epps, Julien
    Lovell, Nigel H.
    Chen, Fang
    2012 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2012, : 3519 - 3522
  • [39] On the analysis of non-linear allometries
    Knell, Robert J.
    ECOLOGICAL ENTOMOLOGY, 2009, 34 (01) : 1 - 11
  • [40] AN EXAMPLE IN NON-LINEAR ANALYSIS
    ROBERTSON, DI
    CONTROL, 1967, 11 (108): : 288 - +