Support vector classification for fault diagnostics of an electrical machine

被引:0
|
作者
Pöyhönen, S [1 ]
Negrea, M [1 ]
Arkkio, A [1 ]
Hyötyniemi, H [1 ]
Koivo, H [1 ]
机构
[1] Helsinki Univ Technol, Lab Control Engn, Helsinki 02015, Finland
来源
2002 6TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS, VOLS I AND II | 2002年
关键词
support vector classification; fault diagnostics; electrical machine; finite element analysis;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Support vector classification (SVC) is applied to fault diagnostics of an electrical machine. Numerical magnetic field analysis is used to provide virtual measurement data from healthy and faulty operation of an electrical machine. Power spectra estimates of a stator current of the motor are calculated with Welch's method, and SVC is applied to distinguish healthy spectrum from faulty spectra. Results are promising. Most of the faults can be classified correctly.
引用
收藏
页码:1719 / 1722
页数:4
相关论文
共 50 条
  • [1] Fault diagnostics of an electrical machine with multiple support vector classifiers
    Poyhonen, S
    Negrea, M
    Arkkio, A
    Hyotyniemi, H
    Koivo, H
    PROCEEDINGS OF THE 2002 IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT CONTROL, 2002, : 373 - 378
  • [2] Fault Diagnostics Based on Pattern Spectrum Entropy and Proximal Support Vector Machine
    Yu, Xiangtao
    Lu, Wenxiu
    Chu, Fulei
    DAMAGE ASSESSMENT OF STRUCTURES VIII, 2009, 413-414 : 607 - 612
  • [3] Vibration Gear Fault Diagnostics Technique Using Wavelet Support Vector Machine
    Widodo, A.
    Widowati, D. P. Dewi
    Satrijo, D.
    Haryanto, I.
    ADVANCES IN MECHANICAL AND MANUFACTURING ENGINEERING, 2014, 564 : 182 - +
  • [4] Application of support vector machine based on pattern spectrum entropy in fault diagnostics of rolling element bearings
    Hao, Rujiang
    Peng, Zhike
    Feng, Zhipeng
    Chu, Fulei
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2011, 22 (04)
  • [5] Intelligent Bearing Diagnostics Using Wavelet Support Vector Machine
    Widodo, A.
    Haryanto, I.
    Prahasto, T.
    ADVANCES IN APPLIED MECHANICS AND MATERIALS, 2014, 493 : 337 - 342
  • [6] Detection of Electrical Fault in Medium Voltage Installation Using Support Vector Machine and Artificial Neural Network
    Laib Dit Leksir, Yazid
    Guerfi, Kadour
    Amouri, Ammar
    Moussaoui, Abdelkrim
    RUSSIAN JOURNAL OF NONDESTRUCTIVE TESTING, 2022, 58 (03) : 176 - 185
  • [7] Submodule Fault Detection in MMCs using Support Vector Classification
    Venkatachari, Sidhaarth
    Mohammadhassani, Ardavan
    Mehrizi-Sani, Ali
    2021 IEEE PES INNOVATIVE SMART GRID TECHNOLOGY EUROPE (ISGT EUROPE 2021), 2021, : 292 - 296
  • [8] Linear Multi-class Classification Support Vector Machine
    Xu, Yan
    Shao, Yuanhai
    Tian, Yingjie
    Deng, Naiyang
    CUTTING-EDGE RESEARCH TOPICS ON MULTIPLE CRITERIA DECISION MAKING, PROCEEDINGS, 2009, 35 : 635 - +
  • [9] Induction machine stator short-circuit fault detection using support vector machine
    Bensaoucha, Saddam
    Brik, Youcef
    Moreau, Sandrine
    Bessedik, Sid Ahmed
    Ameur, Aissa
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2021, 40 (03) : 373 - 389
  • [10] Automated Classification of Epiphyses in the Distal Radius and Ulna using a Support Vector Machine
    Wang, Ya-hui
    Liu, Tai-ang
    Wei, Hua
    Wan, Lei
    Ying, Chong-liang
    Zhu, Guang-you
    JOURNAL OF FORENSIC SCIENCES, 2016, 61 (02) : 409 - 414