LARGE TIME BEHAVIOR FOR THE IBVP OF THE 3-D NISHIDA'S MODEL

被引:4
作者
Deng, Shijin [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
基金
美国国家科学基金会;
关键词
Nishida's model; 3-dimension; weighted energy estimate; large time behavior; COMPRESSIBLE EULER EQUATIONS; NONLINEAR DIFFUSION WAVES; HYPERBOLIC CONSERVATION-LAWS; ASYMPTOTIC-BEHAVIOR; P-SYSTEM; CONVERGENCE-RATES; EXISTENCE; VACUUM;
D O I
10.3934/nhm.2010.5.133
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we investigate an initial boundary value problem (IBVP) for the Nishda's modelin 3-dimensional space with a forward moving physical boundary. It is shown that the solution converges to zero with an exponential rate by energy estimates.
引用
收藏
页码:133 / 142
页数:10
相关论文
共 26 条
[21]   Long time behavior of solutions to the 3D compressible Euler equations with damping [J].
Sideris, TC ;
Thomases, B ;
Wang, DH .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2003, 28 (3-4) :795-816
[22]   Existence and stability of planar diffusion waves for 2-D Euler equations with damping [J].
Wang, Weike ;
Yang, Tong .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 242 (01) :40-71
[23]   The pointwise estimates of solutions for Euler equations with damping in multi-dimensions [J].
Wang, WK ;
Yang, T .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 173 (02) :410-450
[24]   Local existence with physical vacuum boundary condition to Euler equations with damping [J].
Xu, CJ ;
Tong, Y .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 210 (01) :217-231
[25]   The suppressible property of the solution for three-dimensional Euler equations with damping [J].
Yang, Xiongfeng ;
Wang, Weike .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2007, 8 (01) :53-61
[26]   Convergence to strong nonlinear diffusion waves for solutions of p-system with damping [J].
Zhao, HJ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 174 (01) :200-236