Rogue waves in birefringent optical fibers: elliptical and isotropic fibers

被引:17
作者
Ablowitz, Mark J. [1 ]
Horikis, Theodoros P. [2 ]
机构
[1] Univ Colorado, Dept Appl Math, 526 UCB, Boulder, CO 80309 USA
[2] Univ Ioannina, Dept Math, GR-45110 Ioannina, Greece
基金
美国国家科学基金会;
关键词
rogue waves; birefringent optical fibers; modulation instability; coupled NLS system; MODULATIONAL INSTABILITY; FREAK WAVES; WATER;
D O I
10.1088/2040-8986/aa69da
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Rogue waves in elliptically polarized birefringent optical fibers are analyzed within the framework of a 'non-integrable' coupled nonlinear Schrodinger (CNLS) system, which can be used to describe pulse propagation in elliptically birefringent optical fibers. The modulation instability (MI) analysis of this system reveals that, in general, this coupled system is more unstable than its scalar (isotropic) counterpart. In fact, numerical simulations indicate that the generation of rogue events is comparable to the isotropic case. This implies that there is no 1-1 correspondence between rogue wave generation and MI, in these media. The birefringence angle for which the maximum number of rogue events is identified and the nature of the rogue wave is described for the different cases. Although the CNLS system is non-integrable in certain cases these rogue waves are well approximated by the rational solutions of the scalar integrable nonlinear Schodinger (NLS) equation, while in other cases solitons of the scalar integrable NLS equation are better approximations of these rogue events. In every case, the relative solution of the isotropic system is found to be well suited to describe these waves.
引用
收藏
页数:8
相关论文
共 30 条
[1]  
Ablowitz M J., 2011, Nonlinear Dispersive Waves: Asymptotic Analysis and Solitons
[2]   Interacting nonlinear wave envelopes and rogue wave formation in deep water [J].
Ablowitz, Mark J. ;
Horikis, Theodoros P. .
PHYSICS OF FLUIDS, 2015, 27 (01)
[3]  
Agrawal GP, 2013, 2013 OPTICAL FIBER COMMUNICATION CONFERENCE AND EXPOSITION AND THE NATIONAL FIBER OPTIC ENGINEERS CONFERENCE (OFC/NFOEC)
[4]   How to excite a rogue wave [J].
Akhmediev, N. ;
Soto-Crespo, J. M. ;
Ankiewicz, A. .
PHYSICAL REVIEW A, 2009, 80 (04)
[5]   Extreme waves that appear from nowhere: On the nature of rogue waves [J].
Akhmediev, N. ;
Soto-Crespo, J. M. ;
Ankiewicz, A. .
PHYSICS LETTERS A, 2009, 373 (25) :2137-2145
[6]   Roadmap on optical rogue waves and extreme events [J].
Akhmediev, Nail ;
Kibler, Bertrand ;
Baronio, Fabio ;
Belic, Milivoj ;
Zhong, Wei-Ping ;
Zhang, Yiqi ;
Chang, Wonkeun ;
Soto-Crespo, Jose M. ;
Vouzas, Peter ;
Grelu, Philippe ;
Lecaplain, Caroline ;
Hammani, K. ;
Rica, S. ;
Picozzi, A. ;
Tlidi, Mustapha ;
Panajotov, Krassimir ;
Mussot, Arnaud ;
Bendahmane, Abdelkrim ;
Szriftgiser, Pascal ;
Genty, Goery ;
Dudley, John ;
Kudlinski, Alexandre ;
Demircan, Ayhan ;
Morgner, Uwe ;
Amiraranashvili, Shalva ;
Bree, Carsten ;
Steinmeyer, Guenter ;
Masoller, C. ;
Broderick, Neil G. R. ;
Runge, Antoine F. J. ;
Erkintalo, Miro ;
Residori, S. ;
Bortolozzo, U. ;
Arecchi, F. T. ;
Wabnitz, Stefan ;
Tiofack, C. G. ;
Coulibaly, S. ;
Taki, M. .
JOURNAL OF OPTICS, 2016, 18 (06)
[7]   EXACT 1ST-ORDER SOLUTIONS OF THE NONLINEAR SCHRODINGER-EQUATION [J].
AKHMEDIEV, NN ;
ELEONSKII, VM ;
KULAGIN, NE .
THEORETICAL AND MATHEMATICAL PHYSICS, 1987, 72 (02) :809-818
[8]   Solutions of the Vector Nonlinear Schrodinger Equations: Evidence for Deterministic Rogue Waves [J].
Baronio, Fabio ;
Degasperis, Antonio ;
Conforti, Matteo ;
Wabnitz, Stefan .
PHYSICAL REVIEW LETTERS, 2012, 109 (04)
[9]   DISINTEGRATION OF WAVE TRAINS ON DEEP WATER .1. THEORY [J].
BENJAMIN, TB ;
FEIR, JE .
JOURNAL OF FLUID MECHANICS, 1967, 27 :417-&
[10]   Deterministic Optical Rogue Waves [J].
Bonatto, Cristian ;
Feyereisen, Michael ;
Barland, Stephane ;
Giudici, Massimo ;
Masoller, Cristina ;
Rios Leite, Jose R. ;
Tredicce, Jorge R. .
PHYSICAL REVIEW LETTERS, 2011, 107 (05)