New asymptotic profiles of nonstationary solutions of the Navier-Stokes system

被引:66
作者
Brandolese, Lorenzo
Vigneron, Francois
机构
[1] Univ Lyon 1, CNRS, UMR 5208, Inst Camille Jordan, F-69622 Villeurbanne, France
[2] Ecole Polytech, Ctr Math Laurent Schwartz, CNRS, UMR 7640, F-91128 Palaiseau, France
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2007年 / 88卷 / 01期
关键词
asymptotic behavior at infinity; far field asymptotics; upper bound estimates; lower bound estimates; mild solutions to the Navier-Stokes system; peetre weight;
D O I
10.1016/j.matpur.2007.04.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that solutions u(x, t) of the nonstationary incompressible Navier-Stokes system in R-d (d >= 2) starting from mild decaying data a behave as vertical bar x vertical bar -> infinity as a potential field: [GRAPHICS] where gamma(d) is a constant and [GRAPHICS] is the energy matrix of the flow. We deduce that, for well localized data, and for small t and large enough vertical bar x vertical bar, [GRAPHICS] where the lower bound holds on the complementary of a set of directions, of arbitrary small measure on Sd-1. We also obtain new lower bounds for the large time decay of the weighted-L-p norms, extending previous results of Schonbek, Miyakawa, Bae and Jin. (c) 2007 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:64 / 86
页数:23
相关论文
共 25 条
[1]  
[Anonymous], FUNKC EKVACIOJ
[2]   Upper and lower bounds of temporal and spatial decays for the Navier-Stokes equations [J].
Bae, HO ;
Jin, BJ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 209 (02) :365-391
[3]   Space-time decay of Navier-Stokes flows invariant under rotations [J].
Brandolese, L .
MATHEMATISCHE ANNALEN, 2004, 329 (04) :685-706
[4]  
Brandolese L, 2004, REV MAT IBEROAM, V20, P223
[5]   On the instantaneous spreading for the Navier-Stokes system in the whole space [J].
Brandolese, L ;
Meyer, Y .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2002, 8 :273-285
[6]  
CANNONE M, 2007, SLOWLY DECAYING SOLU
[7]   Large-time behavior in incompressible Navier-Stokes equations [J].
Carpio, A .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (02) :449-475
[8]   Asymptotic profiles of nonstationary incompressible Navier-Stokes flows in the whole space [J].
Fujigaki, Y ;
Miyakawa, T .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2001, 33 (03) :523-544
[9]  
FUJIGAKI Y, 2002, INT MAT SER, P91
[10]   Uniqueness for the two-dimensional Navier-Stokes equation with a measure as initial vorticity [J].
Gallagher, I ;
Gallay, T .
MATHEMATISCHE ANNALEN, 2005, 332 (02) :287-327