Performance evaluation of bifacial PV modules using high thermal conductivity fins

被引:27
作者
Li, Jiaqi [1 ]
Zhou, Yanfang [1 ,2 ]
Niu, Xinwei [2 ]
Sun, Shouliang [2 ]
Xu, Li [2 ]
Jian, Yanzhen [2 ]
Cheng, Qing [1 ]
机构
[1] Nanjing Tech Univ, Sch Energy Sci & Engn, Nanjing, Peoples R China
[2] Ja Solar Technol Co LTD, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Natural convection; Air cooling; Cell?s performance; Solar energy; Power conversion efficiency; MICROPOLAR DUSTY FLUID; CONVECTION MHD FLOW; HYBRID BASE FLUID; ELECTRICAL PERFORMANCE; COOLING TECHNOLOGY; NANOFLUID FLOW; SQUEEZING FLOW; BOUNDARY-LAYER; ENERGY YIELD; RADIATION;
D O I
10.1016/j.solener.2022.09.017
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The air cooling method for bifacial PV modules is highly significant for PV power station, especially when the environmental wind speed is low, as the high temperature of bifacial PV modules will reduce the power con-version efficiency and lifetime. In this paper, a new concise and convenient air cooling method (natural con-vection hybrid air-fin heat sink cooling method) for the bifacial PV module is developed, which uses fins with high thermal conductivity material to achieve passive cooling of the bifacial PV module. The results show that bifacial PV modules coupled with natural convection hybrid air-fin heat sink cooling method can decrease the maximum and average temperatures in subtropic climate(Dubai) and temperate climate(Harbin). For the bifacial PV module with high thermal conductivity embedded fins in Dubai, the best temperature drops of 13.6 K and 11.9 K can be acquired for the maximum and average temperatures, respectively. The best fin height is 60 mm by considering the structural stability and convenient installation, and the best thermal conductivity of non -embedded or embedded fins is around 200 W/(m K). The power conversion efficiency improvement of 4.4 % can be achieved when high thermal conductivity embedded fins are applied for the bifacial PV module.
引用
收藏
页码:108 / 119
页数:12
相关论文
共 50 条
[1]  
Allen MR, 2016, NAT ENERGY, V1, DOI [10.1038/nenergy.2016.103, 10.1038/NENERGY.2016.103]
[2]  
Aneli S., 2020, TECNICA ITALIANA ITA, V64, P186
[3]  
Budea S., 2021, IOP Conference Series: Earth and Environmental Science, V664, DOI 10.1088/1755-1315/664/1/012032
[4]   Improvement of the electricity performance of bifacial PV module applied on the building envelope [J].
Chen, Mo ;
Zhang, Wei ;
Xie, Lingzhi ;
He, Bo ;
Wang, Wei ;
Li, Jianhui ;
Li, Zihao .
ENERGY AND BUILDINGS, 2021, 238 (238)
[5]   3D mixed convection MHD flow of GO-MoS2 hybrid nanoparticles in H2O-(CH2OH)2 hybrid base fluid under the effect of H2 bond [J].
Ghadikoiaei, S. S. ;
Gholinia, M. .
INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2020, 110
[6]   Investigation on Magneto Eyring-Powell nanofluid flow over inclined stretching cylinder with nolinear thermal radiation and Joule heating effect [J].
Ghadikolaei, S. S. ;
Hosseinzadeh, Kh ;
Ganji, D. D. .
WORLD JOURNAL OF ENGINEERING, 2019, 16 (01) :51-63
[7]   Terrific effect of H2 on 3D free convection MHD flow of C2H6O2-H2O hybrid base fluid to dissolve Cu nanoparticles in a porous space considering the thermal radiation and nanoparticle shapes effects [J].
Ghadikolaei, S. S. ;
Gholinia, M. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (31) :17072-17083
[8]   Natural convection MHD flow due to MoS2-Ag nanoparticles suspended in C2H6O2-H2O hybrid base fluid with thermal radiation [J].
Ghadikolaei, S. S. ;
Gholinia, M. ;
Hoseini, M. E. ;
Ganji, D. D. .
JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2019, 97 :12-23
[9]   Investigation on ethylene glycol-water mixture fluid suspend by hybrid nanoparticles (TiO2-CuO) over rotating cone with considering nanoparticles shape factor [J].
Ghadikolaei, S. S. ;
Hosseinzadeh, Kh. ;
Ganji, D. D. .
JOURNAL OF MOLECULAR LIQUIDS, 2018, 272 :226-236
[10]   Numerical study on magnetohydrodynic CNTs-water nanofluids as a micropolar dusty fluid influenced by non-linear thermal radiation and joule heating effect [J].
Ghadikolaei, S. S. ;
Hosseinzadeh, Kh ;
Ganji, D. D. .
POWDER TECHNOLOGY, 2018, 340 :389-399