A Machine Learning Approach to Parkinson's Disease Blood Transcriptomics

被引:16
作者
Pantaleo, Ester [1 ,2 ,3 ]
Monaco, Alfonso [1 ]
Amoroso, Nicola [1 ,4 ]
Lombardi, Angela [1 ,3 ]
Bellantuono, Loredana [1 ,2 ]
Urso, Daniele [5 ,6 ]
Lo Giudice, Claudio [7 ]
Picardi, Ernesto [7 ,8 ]
Tafuri, Benedetta [5 ]
Nigro, Salvatore [5 ,9 ]
Pesole, Graziano [7 ,8 ]
Tangaro, Sabina [1 ,10 ]
Logroscino, Giancarlo [2 ,5 ]
Bellotti, Roberto [1 ,3 ]
机构
[1] Ist Nazl Fis Nucl INFN, Sez Bari, Via A Orabona 4, I-70125 Bari, Italy
[2] Univ Bari Aldo Moro, Dipartimento Sci Med Base Neurosci & Organi Senso, Piazza G Cesare 11, I-70124 Bari, Italy
[3] Univ Bari Aldo Moro, Dipartimento Interateneo Fis M Merlin, Via G Amendola 173, I-70125 Bari, Italy
[4] Univ Bari Aldo Moro, Dipartimento Farm Sci Farmaco, Via A Orabona 4, I-70125 Bari, Italy
[5] Univ Bari Aldo Moro, Pia Fdn Cardinale G Pan, Ctr Malattie Neurodegenerat & Invecchiamento Cere, Dipartimento Ric Clin Neurol, I-73039 Tricase, Italy
[6] Kings Coll London, Inst Psychiat Psychol & Neurosci, De Crespigny Pk, London SE5 8AF, England
[7] Univ Bari Aldo Moro, Dipartimento Biosci Biotecnol & Biofarmaceut, Via A Orabona 4, I-70125 Bari, Italy
[8] CNR, Ist Biomembrane Bioenerget & Biotecnol Mol, Via G Amendola 122-O, I-70126 Bari, Italy
[9] CNR, Ist Nanotecnol NANOTEC, Via Monteroni, I-73100 Lecce, Italy
[10] Univ Bari Aldo Moro, Dipartimento Sci Suolo Pianta & Alimenti, Via A Orabona 4, I-70125 Bari, Italy
关键词
blood transcriptomics; Parkinson's disease; machine learning; xgboost; feature selection; oxidative stress; inflammation; mitochondrial dysfunction; GENE-EXPRESSION; PROTEIN; CLASSIFICATION; PATHOGENESIS; COMPACTA; MARKERS; PROFILE;
D O I
10.3390/genes13050727
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The increased incidence and the significant health burden associated with Parkinson's disease (PD) have stimulated substantial research efforts towards the identification of effective treatments and diagnostic procedures. Despite technological advancements, a cure is still not available and PD is often diagnosed a long time after onset when irreversible damage has already occurred. Blood transcriptomics represents a potentially disruptive technology for the early diagnosis of PD. We used transcriptome data from the PPMI study, a large cohort study with early PD subjects and age matched controls (HC), to perform the classification of PD vs. HC in around 550 samples. Using a nested feature selection procedure based on Random Forests and XGBoost we reached an AUC of 72% and found 493 candidate genes. We further discussed the importance of the selected genes through a functional analysis based on GOs and KEGG pathways.
引用
收藏
页数:21
相关论文
共 58 条
[1]   Complex networks reveal early MRI markers of Parkinson's disease [J].
Amoroso, Nicola ;
La Rocca, Marianna ;
Monaco, Alfonso ;
Bellotti, Roberto ;
Tangaro, Sabina .
MEDICAL IMAGE ANALYSIS, 2018, 48 :12-24
[2]   Environmental Impact on the Epigenetic Mechanisms Underlying Parkinson's Disease Pathogenesis: A Narrative Review [J].
Angelopoulou, Efthalia ;
Paudel, Yam Nath ;
Papageorgiou, Sokratis G. ;
Piperi, Christina .
BRAIN SCIENCES, 2022, 12 (02)
[3]  
[Anonymous], 2021, IEEE Trans. Broadcast.
[4]   The Role of the SLC Transporters Protein in the Neurodegenerative Disorders [J].
Aykac, Asli ;
Sehirli, Ahmet Ozer .
CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE, 2020, 18 (02) :174-187
[5]   Parkinson's disease prediction using gene expression - A projection based learning meta-cognitive neural classifier approach [J].
Babu, G. Sateesh ;
Suresh, S. .
EXPERT SYSTEMS WITH APPLICATIONS, 2013, 40 (05) :1519-1529
[6]  
Barbanti P, 1999, MOVEMENT DISORD, V14, P764, DOI 10.1002/1531-8257(199909)14:5<764::AID-MDS1008>3.0.CO
[7]  
2-W
[8]  
Breiman L, 1996, MACH LEARN, V24, P123, DOI 10.1023/A:1018054314350
[9]   Blood transcriptomics of drug-naive sporadic Parkinson's disease patients [J].
Calligaris, Raffaella ;
Banica, Mihaela ;
Roncaglia, Paola ;
Robotti, Elisa ;
Finaurini, Sara ;
Vlachouli, Christina ;
Antonutti, Lucia ;
Iorio, Francesco ;
Carissimo, Annamaria ;
Cattaruzza, Tatiana ;
Ceiner, Andrea ;
Lazarevic, Dejan ;
Cucca, Alberto ;
Pangher, Nicola ;
Marengo, Emilio ;
di Bernardo, Diego ;
Pizzolato, Gilberto ;
Gustincich, Stefano .
BMC GENOMICS, 2015, 16
[10]   A meta-analysis of genome-wide association studies identifies 17 new Parkinson's disease risk loci [J].
Chang, Diana ;
Nalls, Mike A. ;
Hallgrimsdottir, Ingileif B. ;
Hunkapiller, Julie ;
van der Brug, Marcel ;
Cai, Fang ;
Kerchner, Geoffrey A. ;
Ayalon, Gai ;
Bingol, Baris ;
Sheng, Morgan ;
Hinds, David ;
Behrens, Timothy W. ;
Singleton, Andrew B. ;
Bhangale, Tushar R. ;
Graham, Robert R. .
NATURE GENETICS, 2017, 49 (10) :1511-+