General fractional integral inequalities for convex and m-convex functions via an extended generalized Mittag-Leffler function

被引:20
作者
Farid, G. [1 ]
Khan, K. A. [2 ]
Latif, N. [3 ]
Rehman, A. U. [1 ]
Mehmood, S. [4 ]
机构
[1] COMSATS Univ Islamabad, Dept Math, Attock, Pakistan
[2] Univ Sargodha, Dept Math, Sargodha, Pakistan
[3] Jubail Ind Coll, Gen Studies Dept, Jubail Ind City, Saudi Arabia
[4] GBPS Sherani, Hazro Attock, Pakistan
关键词
Convex function; m-convex function; Mittag-Leffler function; Generalized fractional integral operators; Hadamard inequality;
D O I
10.1186/s13660-018-1830-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper some new general fractional integral inequalities for convex and m-convex functions by involving an extended Mittag-Leffler function are presented. These results produce inequalities for several kinds of fractional integral operators. Some interesting special cases of our main results are also pointed out.
引用
收藏
页数:12
相关论文
共 19 条
[1]   Generalizations of some fractional integral inequalities via generalized Mittag-Leffler function [J].
Abbas, Ghulam ;
Khan, Khuram Ali ;
Farid, Ghulam ;
Rehman, Atiq Ur .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
[2]  
Andric M., GENERALIZATION MITTA
[3]  
[Anonymous], INTEGRAL TRANSFORMS
[4]  
[Anonymous], 1993, Stud. U. Babes-Bol. Mat.
[5]  
[Anonymous], 2002, TAMKANG J MATH
[6]  
[Anonymous], 2014, TURK J ANAL NUMBER T, DOI DOI 10.12691/TJANT-2-3-6
[7]  
[Anonymous], 2018, ANN MATH SIL
[8]  
[Anonymous], 2012, J. Fract. Calc. Appl
[9]  
Bakula M. K., 2008, J INEQUAL PURE APPL, V9
[10]   Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula [J].
Dragomir, SS ;
Agarwal, RP .
APPLIED MATHEMATICS LETTERS, 1998, 11 (05) :91-95