Powers of edge ideals with linear resolutions

被引:11
作者
Erey, Nursel [1 ]
机构
[1] North Dakota State Univ, Dept Math, Fargo, ND 58105 USA
关键词
Castelnuovo-Mumford regularity; edge ideal; MONOMIAL IDEALS; REGULARITY; GRAPHS; CYCLES;
D O I
10.1080/00927872.2018.1430810
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that if G is a gap-free and diamond-free graph, then I(G)(s) has a linear minimal free resolution for every s >= 2.
引用
收藏
页码:4007 / 4020
页数:14
相关论文
共 11 条
[1]  
[Anonymous], 1990, TOPICS ALGEBRA
[2]   On (P5, diamond)-free graphs [J].
Arbib, C ;
Mosca, R .
DISCRETE MATHEMATICS, 2002, 250 (1-3) :1-22
[3]   The regularity of powers of edge ideals [J].
Banerjee, Arindam .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2015, 41 (02) :303-321
[4]   Regularity of powers of forests and cycles [J].
Beyarslan, Selvi ;
Ha, Huy Tai ;
Tran Nam Trung .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2015, 42 (04) :1077-1095
[5]   THE MAXIMUM NUMBER OF EDGES IN 2K2-FREE GRAPHS OF BOUNDED DEGREE [J].
CHUNG, FRK ;
GYARFAS, A ;
TUZA, Z ;
TROTTER, WT .
DISCRETE MATHEMATICS, 1990, 81 (02) :129-135
[6]   Bounds on the regularity and projective dimension of ideals associated to graphs [J].
Dao, Hailong ;
Huneke, Craig ;
Schweig, Jay .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2013, 38 (01) :37-55
[7]   Monomial ideals whose powers have a linear resolution [J].
Herzog, J ;
Hibi, T ;
Zheng, XX .
MATHEMATICA SCANDINAVICA, 2004, 95 (01) :23-32
[8]  
Herzog J, 2011, GRAD TEXTS MATH, V260, P3, DOI 10.1007/978-0-85729-106-6
[9]   Asymptotic behaviour of Castelnuovo-Mumford regularity [J].
Kodiyalam, V .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (02) :407-411
[10]   Regularity of powers of edge Ideal of whiskered cycles [J].
Moghinnian, M. ;
Fakhari, S. A. Seyed ;
Yassenni, S. .
COMMUNICATIONS IN ALGEBRA, 2017, 45 (03) :1246-1259