On average losses in the ruin problem with fractional Brownian motion as input

被引:4
|
作者
Boulongne, Patrick [2 ]
Pierre-Loti-Viaud, Daniel [3 ]
Piterbarg, Vladimir [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Moscow 119992, Russia
[2] Univ Paris 08, F-93526 St Denis, France
[3] Univ Paris 06, LSTA, F-75252 Paris, France
关键词
Gaussian process; Large excursions; Average loss; Ruin problem; EXTREMES;
D O I
10.1007/s10687-008-0069-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the model S-t = u + ct - B-t(H), where u > 0, c > 0, B-t(H) is the fractional Brownian motion with Hurst parameter H, 0 < H < 1. We study the asymptotic behavior of average losses in the case of ruin, i.e. the asymptotic behavior of the conditional expected value E (-inf(t is an element of[0,T]) S-t vertical bar inf(t is an element of[0,T]) S-t < 0) as u -> 8. Three cases are considered: the short time horizon, with T finite or growing much slower than u; the long time horizon, with T at or above the time of ruin, including infinity; and the intermediate time horizon, with T proportional to u but not growing as fast as in the long time horizon. As one of the examples, we derive an asymptotically optimal portfolio minimizing average losses in the case of two independent markets.
引用
收藏
页码:77 / 91
页数:15
相关论文
共 42 条
  • [1] On average losses in the ruin problem with fractional Brownian motion as input
    Patrick Boulongne
    Daniel Pierre-Loti-Viaud
    Vladimir Piterbarg
    Extremes, 2009, 12 : 77 - 91
  • [2] Ruin problem of a two-dimensional fractional Brownian motion risk process
    Ji, Lanpeng
    Robert, Stephan
    STOCHASTIC MODELS, 2018, 34 (01) : 73 - 97
  • [3] Fractional Brownian motion ruin model with random inspection time
    Jasnovidov, Grigori
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2025, : 417 - 434
  • [4] Approximation of the maximum of storage process with fractional Brownian motion as input
    Xu, Zhengchun
    Tan, Zhongquan
    Tang, Linjun
    STATISTICS & PROBABILITY LETTERS, 2018, 140 : 147 - 159
  • [5] Extremes of Shepp statistics for fractional Brownian motion
    Tan ZhongQuan
    Yang Yang
    SCIENCE CHINA-MATHEMATICS, 2015, 58 (08) : 1779 - 1794
  • [6] Tempered fractional Brownian motion
    Meerschaert, Mark M.
    Sabzikar, Farzad
    STATISTICS & PROBABILITY LETTERS, 2013, 83 (10) : 2269 - 2275
  • [7] Oscillatory Fractional Brownian Motion
    T. Bojdecki
    L. G. Gorostiza
    A. Talarczyk
    Acta Applicandae Mathematicae, 2013, 127 : 193 - 215
  • [8] Oscillatory Fractional Brownian Motion
    Bojdecki, T.
    Gorostiza, L. G.
    Talarczyk, A.
    ACTA APPLICANDAE MATHEMATICAE, 2013, 127 (01) : 193 - 215
  • [9] Simultaneous ruin probability for two-dimensional fractional Brownian motion risk process over discrete grid
    Jasnovidov, Grigori
    LITHUANIAN MATHEMATICAL JOURNAL, 2021, 61 (02) : 246 - 260
  • [10] Lower classes for fractional Brownian motion
    Talagrand, M
    JOURNAL OF THEORETICAL PROBABILITY, 1996, 9 (01) : 191 - 213