Nanoclusters and nanolines: the effect of molybdenum oxide substrate stoichiometry on iron self-assembly

被引:1
|
作者
Lubben, O. [1 ,2 ]
Krasnikov, S. A. [1 ,2 ]
Walls, B. [1 ,2 ]
Sergeeva, N. N. [3 ]
Murphy, B. E. [1 ,2 ]
Chaika, A. N. [1 ,2 ,4 ]
Bozhko, S. I. [1 ,2 ,4 ]
Shvets, I. V. [1 ,2 ]
机构
[1] Trinity Coll Dublin, Sch Phys, Dublin 2, Ireland
[2] Trinity Coll Dublin, CRANN, Dublin 2, Ireland
[3] Univ Leeds, Sch Chem, Leeds LS2 9JT, W Yorkshire, England
[4] Russian Acad Sci, Inst Solid State Phys, Chernogolovka, Russia
基金
爱尔兰科学基金会;
关键词
iron nanoclusters; self-assembly; scanning tunnelling microscopy; density functional theory; molybdenum oxide; GOLD CLUSTERS; NANOSTRUCTURES; MICROSCOPY; STM;
D O I
10.1088/1361-6528/aa6b50
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The growth of Fe nanostructures on the stoichiometric MoO2/Mo(110) and oxygen-rich MoO2+x/Mo(110) surfaces has been studied using low-temperature scanning tunnelling microscopy (STM) and density functional theory calculations. STM results indicate that at low coverage Fe nucleates on the MoO2/Mo(110) surface, forming small, well-ordered nanoclusters of uniform size, each consisting of five Fe atoms. These five-atom clusters can agglomerate into larger nanostructures reflecting the substrate geometry, but they retain their individual character within the structure. Linear Fe nanocluster arrays are formed on the MoO2/Mo(110) surface at room temperature when the surface coverage is greater than 0.6 monolayers. These nanocluster arrays follow the direction of the oxide rows of the strained MoO2/Mo(110) surface. Slightly altering the preparation procedure of MoO2/Mo(110) leads to the presence of oxygen adatoms on this surface. Fe deposition onto the oxygen-rich MoO2+x/Mo(110) surface results in elongated nanostructures that reach up to 24 nm in length. These nanolines have a zigzag shape and are likely composed of partially oxidised Fe formed upon reaction with the oxygen-rich surface.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Self-assembly and photoluminescence of molybdenum oxide nanoparticles
    Navas, I.
    Vinodkumar, R.
    Pillai, V. P. Mahadevan
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2011, 103 (02): : 373 - 380
  • [2] Self-assembly and photoluminescence of molybdenum oxide nanoparticles
    I. Navas
    R. Vinodkumar
    V. P. Mahadevan Pillai
    Applied Physics A, 2011, 103
  • [3] Self-assembly of solid nanoclusters in molybdenum under gas ion implantation
    Sun, Cheng
    Jiang, Chao
    Jossou, Ericmoore
    Topsakal, Mehmet
    Gill, Simerjeet K.
    Ecker, Lynne E.
    Gan, Jian
    SCRIPTA MATERIALIA, 2021, 194
  • [4] Self-assembly of polymer and molybdenum oxide into lamellar hybrid materials
    Shao, Ke
    Liao, Shangping
    Luo, Haimei
    Wang, Mingliang
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2008, 320 (02) : 445 - 451
  • [5] Efficient self-assembly of transition metal oxide nanoclusters on silicon substrates
    Cao, LY
    Chai, Y
    Li, PJ
    Shen, ZY
    Wu, JL
    THIN SOLID FILMS, 2005, 492 (1-2) : 13 - 18
  • [6] Simulation of the Self-Assembly of Metal Nanoclusters
    A. E. Korenchenko
    A. G. Vorontsov
    R. A. Okulov
    B. R. Gel’chinskii
    Russian Metallurgy (Metally), 2022, 2022 : 927 - 932
  • [7] Simulation of the Self-Assembly of Metal Nanoclusters
    Korenchenko, A. E.
    Vorontsov, A. G.
    Okulov, R. A.
    Gel'chinskii, B. R.
    RUSSIAN METALLURGY, 2022, 2022 (08): : 927 - 932
  • [8] Effect of substrate type on Ni self-assembly process
    柴旭朝
    瞿博阳
    焦岳超
    刘萍
    马彦霞
    王凤歌
    李晓荃
    方向前
    韩平
    张荣
    Chinese Physics B, 2019, 28 (01) : 478 - 483
  • [9] Effect of substrate type on Ni self-assembly process
    Chai, Xuzhao
    Qu, Boyang
    Jiao, Yuechao
    Liu, Ping
    Ma, Yanxia
    Wang, Fengge
    Li, Xiaoquan
    Fang, Xiangqian
    Han, Ping
    Zhang, Rong
    CHINESE PHYSICS B, 2019, 28 (01)
  • [10] Colloidal Self-Assembly of Catalytic Copper Nanoclusters into Ultrathin Ribbons
    Wu, Zhennan
    Li, Yanchun
    Liu, Jiale
    Lu, Zhongyuan
    Zhang, Hao
    Yang, Bai
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (45) : 12196 - 12200