Exploring parameter selection for carbon monitoring based on Landsat-8 imagery of the aboveground forest biomass on Mount Tai

被引:11
作者
Qiu, Agen [1 ]
Yang, Yi [2 ]
Wang, Dongchao [2 ]
Xu, Shenghua [1 ]
Wang, Xiao [2 ]
机构
[1] Chinese Acad Surveying & Mapping, Res Ctr Govt GIS, Beijing, Peoples R China
[2] Jiangsu Ocean Univ, Sch Geomat & Marine Informat, 59 Cangwu Rd, Lianyungang 222005, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature selection; Landsat-8; SVM-RFE; forest biomass; TROPICAL FOREST; GENE SELECTION; SVM-RFE; VEGETATION; INVERSION; REFLECTANCE; MODEL; INDEX;
D O I
10.1080/22797254.2019.1686717
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Forests play a fundamental role in stabilizing the global climate. Aboveground biomass (AGB) is important to the global carbon balance and environmental protection. Remotely sensed features such as single-band information, vegetation indices, texture features and terrain factors have been assessed to accurately estimate the forest biomass. A feature selection SVM-RFE (support vector machine recursive feature elimination) method is proposed to explore the relationship between the biomass and parameters derived from the Mount Tai area Landsat-8 imagery, thereby improving the AGB estimation accuracy. The least significant parameter is recursively removed according to a scoring function to determine the optimal subset of parameters. The performance of the SVM-RFE algorithm biomass feature selection method is then compared with the widely used stepwise regression method. The results show that the SVM-RFE method is superior to the stepwise linear regression method. And it could accurately estimate the AGB compared with field measurements in the context of the recent reducing emissions from forest deforestation and degradation (REDD) mechanism adopted by the United Nations.
引用
收藏
页码:4 / 15
页数:12
相关论文
共 42 条
[1]   Using multilevel remote sensing and ground data to estimate forest biomass resources in remote regions: a case study in the boreal forests of interior Alaska [J].
Andersen, Hans-Erik ;
Strunk, Jacob ;
Temesgen, Hailemariam ;
Atwood, Donald ;
Winterberger, Ken .
CANADIAN JOURNAL OF REMOTE SENSING, 2011, 37 (06) :596-611
[2]   A first map of tropical Africa's above-ground biomass derived from satellite imagery [J].
Baccini, A. ;
Laporte, N. ;
Goetz, S. J. ;
Sun, M. ;
Dong, H. .
ENVIRONMENTAL RESEARCH LETTERS, 2008, 3 (04)
[3]   Remotely sensed biomass over steep slopes: An evaluation among successional stands of the Atlantic Forest, Brazil [J].
Barbosa, Jomar Magalhaes ;
Melendez-Pastor, Ignacio ;
Navarro-Pedreno, Jose ;
Bitencourt, Marisa Dantas .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2014, 88 :91-100
[4]   Data quality reporting: Good practice for transparent estimates from forest and land cover surveys [J].
Birigazzi, Luca ;
Gregoire, Timothy G. ;
Finegold, Yelena ;
Golec, Rock D. Condor ;
Sandker, Marieke ;
Donegan, Emily ;
Gamarra, Javier G. P. .
ENVIRONMENTAL SCIENCE & POLICY, 2019, 96 :85-94
[5]   Mapping US forest biomass using nationwide forest inventory data and moderate resolution information [J].
Blackard, J. A. ;
Finco, M. V. ;
Helmer, E. H. ;
Holden, G. R. ;
Hoppus, M. L. ;
Jacobs, D. M. ;
Lister, A. J. ;
Moisen, G. G. ;
Nelson, M. D. ;
Riemann, R. ;
Ruefenacht, B. ;
Salajanu, D. ;
Weyermann, D. L. ;
Winterberger, K. C. ;
Brandeis, T. J. ;
Czaplewski, R. L. ;
McRoberts, R. E. ;
Patterson, P. L. ;
Tymcio, R. P. .
REMOTE SENSING OF ENVIRONMENT, 2008, 112 (04) :1658-1677
[6]   BASSUM: A Bayesian semi-supervised method for classification feature selection [J].
Cai, Ruichu ;
Zhang, Zhenjie ;
Hao, Zhifeng .
PATTERN RECOGNITION, 2011, 44 (04) :811-820
[7]   Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland [J].
Darvishzadeh, Roshanak ;
Skidmore, Andrew ;
Schlerf, Martin ;
Atzberger, Clement .
REMOTE SENSING OF ENVIRONMENT, 2008, 112 (05) :2592-2604
[8]   Temporal dynamics of spatial heterogeneity over cropland quantified by time-series NDVI, near infrared and red reflectance of Landsat 8 OLI imagery [J].
Ding, Yanling ;
Zhao, Kai ;
Zheng, Xingming ;
Jiang, Tao .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2014, 30 :139-145
[9]   A graph Laplacian based approach to semi-supervised feature selection for regression problems [J].
Doquire, Gauthier ;
Verleysen, Michel .
NEUROCOMPUTING, 2013, 121 :5-13
[10]   Improved Forest Biomass and Carbon Estimations Using Texture Measures from WorldView-2 Satellite Data [J].
Eckert, Sandra .
REMOTE SENSING, 2012, 4 (04) :810-829