A theorem of uniqueness for an inviscid dyadic model

被引:12
作者
Barbato, D. [1 ]
Flandoli, Franco [2 ]
Morandin, Francesco [3 ]
机构
[1] Univ Padua, Dipartimento Matemat Pura & Applicata, I-35121 Padua, Italy
[2] Univ Pisa, Dipartimento Matemat Applicata, I-56127 Pisa, Italy
[3] Univ Parma, Dipartimento Matemat, I-43124 Parma, Italy
关键词
EULER EQUATIONS; FINITE-TIME; BLOW-UP;
D O I
10.1016/j.crma.2010.03.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the solutions of the Cauchy problem for a dyadic model of Euler equations. We prove global existence and uniqueness of Leray-Hopf solutions in a rather large class K that implies in particular global existence and uniqueness in l(2) for all initial positive conditions in l(2). (C) 2010 Academic des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:525 / 528
页数:4
相关论文
共 9 条
[1]  
BARBATO D, 2011, T AM MATH S IN PRESS
[2]  
BARBATO D, P AM MATH S IN PRESS
[3]   Blow-up in finite time for the dyadic model of the Navier-Stokes equations [J].
Cheskidov, Alexey .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (10) :5101-5120
[4]  
De Lellis C., ARXIV07123288
[5]   Blowup in a three-dimensional vector model for the Euler equations [J].
Friedlander, S ;
Pavlovic, N .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (06) :705-725
[6]   Finite time blow-up for a Dyadic model of the Euler equations [J].
Katz, NH ;
Pavlovic, N .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (02) :695-708
[7]  
KISELEV A, 2005, IMRN, V38, P2315
[8]   On the movement of a viscous fluid to fill the space [J].
Leray, J .
ACTA MATHEMATICA, 1934, 63 (01) :193-248
[9]   On some dyadic models of the Euler equations [J].
Waleffe, F .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (10) :2913-2922