Tetrathiafulvalene as a multifunctional electrolyte additive for simultaneous interface amelioration, electron conduction, and polysulfide redox regulation in lithium-sulfur batteries

被引:20
作者
Wu, Tong [1 ]
Ye, Jinting [1 ]
Li, Tunan [1 ]
Liu, Yuong [2 ]
Jia, Liu [2 ]
Sun, Liqun [2 ]
Liu, Jinghai [1 ]
Xie, Haiming [2 ]
机构
[1] Inner Mongolia Univ Nationalities, Nano Innovat Inst NII, Inner Mongolia Key Lab Carbon Nanomat, Tongliao 028000, Peoples R China
[2] Northeast Normal Univ, Fac Chem, Nat & Local United Engn Lab Power Batteries, Changchun 130024, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-sulfur battery; Low electrolyte/sulfur ratios; Tetrathiafulvalene; Density functional theory; Electrocatalysis; HIGH-PERFORMANCE; IN-SITU; CARBON; LI; ORGANOSULFIDE; CATHODES; MEDIATOR; RATIO; LONG;
D O I
10.1016/j.jpowsour.2022.231482
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Numerous efforts can improve reversible capacity and long cycling stability for lithium-sulfur (Li-S) batteries, however, challenges remain in achieving high sulfur utilization and suppressing the shuttle effect, especially for cells with a low electrolyte/sulfur (E/S) ratio. In this research, we utilize tetrathiafulvalene (TTF) as multifunctional catalyst for high-performance Li-S batteries through optimizing electrolyte chemistry for the first time. With TTF additive in electrolyte, it acts as p-electron donor molecule to improve the electron transport of Li2Sx due to the van der Waals interaction, and promote LiNO3 to Li3N to form highly conductive passivation layer on lithium anode (Li-anode). Furthermore, TTF functions as a catalyst to improve the redox kinetics of Li2Sx thus slowing down the "shuttle effect", improve the utilization of sulfur, and protect the Li-anode. As a result, the cell with TTF exhibits excellent performances with high discharge capacity (1359 mAh g(-1) at 0.1C), long-term cycling stability (509 mAh g(-1) after 500 cycles at 0.5C), and excellent cycling performance even at low E/S ratio (5.5 mu L mg(-1)) (initial discharge capacity of 1129 mAh g(-1) with a capacity decay rate of 0.20% per cycle at 0.1C for 200 cycles).
引用
收藏
页数:8
相关论文
共 54 条
[1]   Understanding the Electrolytes of Lithium-Sulfur Batteries [J].
Angulakshmi, N. ;
Dhanalakshmi, R. Baby ;
Sathya, S. ;
Ahn, Jou-Hyeon ;
Stephan, A. Manuel .
BATTERIES & SUPERCAPS, 2021, 4 (07) :1064-1095
[2]  
Bard A.J., 2001, Electrochem. Methods, V2, P580
[3]   Stabilizing lithium metal using ionic liquids for long-lived batteries [J].
Basile, A. ;
Bhatt, A. I. ;
O'Mullane, A. P. .
NATURE COMMUNICATIONS, 2016, 7
[4]   Tetrathiafulvalene (TTF) derivatives: key building-blocks for switchable processes [J].
Canevet, David ;
Salle, Marc ;
Zhang, Guanxin ;
Zhang, Deqing ;
Zhu, Daoben .
CHEMICAL COMMUNICATIONS, 2009, (17) :2245-2269
[5]   Monodispersed Sulfur Nanoparticles for Lithium Sulfur Batteries with Theoretical Performance [J].
Chen, Hongwei ;
Wang, Changhong ;
Dong, Weiling ;
Lu, Wei ;
Du, Zhaolong ;
Chen, Liwei .
NANO LETTERS, 2015, 15 (01) :798-802
[6]   A Fluorinated Ether Electrolyte Enabled High Performance Prelithiated Graphite/Sulfur Batteries [J].
Chen, Shuru ;
Yu, Zhaoxin ;
Gordin, Mikhail L. ;
Yi, Ran ;
Song, Jiangxuan ;
Wang, Donghai .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (08) :6959-6966
[7]   High capacity of lithium-sulfur batteries at low electrolyte/sulfur ratio enabled by an organosulfide containing electrolyte [J].
Chen, Shuru ;
Gao, Yue ;
Yu, Zhaoxin ;
Gordin, Mikhail L. ;
Song, Jiangxuan ;
Wang, Donghai .
NANO ENERGY, 2017, 31 :418-423
[8]   Functional Organosulfide Electrolyte Promotes an Alternate Reaction Pathway to Achieve High Performance in Lithium-Sulfur Batteries [J].
Chen, Shuru ;
Dai, Fang ;
Gordin, Mikhail L. ;
Yu, Zhaoxin ;
Gao, Yue ;
Song, Jiangxuan ;
Wang, Donghai .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (13) :4231-4235
[9]   Designing Safe Electrolyte Systems for a High-Stability Lithium-Sulfur Battery [J].
Chen, Wei ;
Lei, Tianyu ;
Wu, Chunyang ;
Deng, Min ;
Gong, Chuanhui ;
Hu, Kai ;
Ma, Yinchang ;
Dai, Liping ;
Lv, Weiqiang ;
He, Weidong ;
Liu, Xuejun ;
Xiong, Jie ;
Yan, Chenglin .
ADVANCED ENERGY MATERIALS, 2018, 8 (10)
[10]   New insights into "dead lithium" during stripping in lithium metal batteries [J].
Chen, Xiao-Ru ;
Yan, Chong ;
Ding, Jun-Fan ;
Peng, Hong-Jie ;
Zhang, Qiang .
JOURNAL OF ENERGY CHEMISTRY, 2021, 62 :289-294