Integral isosceles triangle-parallelogram and Heron triangle-rhombus pairs with a common area and common perimeter

被引:10
作者
Das, Pradeep [1 ]
Juyal, Abhishek [2 ]
Moody, Dustin [3 ]
机构
[1] HBNI, Harish Chandra Res Inst, Allahabad, Uttar Pradesh, India
[2] Motilal Nehru Natl Inst Technol, Dept Math, Allahabad 211004, Uttar Pradesh, India
[3] Natl Inst Stand & Technol, Comp Secur Div, Gaithersburg, MD 20899 USA
关键词
Elliptic curve; Isosceles triangle; Heron triangle; Parallelogram; Rhombus; Common area; Common perimeter; ELLIPTIC-CURVES;
D O I
10.1016/j.jnt.2017.04.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we show that there are infinitely many pairs of integer isosceles triangles and integer parallelograms with a common (integral) area and common perimeter. We also show that there are infinitely many Heron triangles and integer rhombuses with common area and common perimeter. As a corollary, we show there does not exist any Heron triangle and integer square which have a common area and common perimeter. Published by Elsevier Inc.
引用
收藏
页码:208 / 218
页数:11
相关论文
共 12 条
[1]  
[Anonymous], 1994, GRAD TEXTS MATH
[2]   Triangle-rectangle pairs with a common area and a common perimeter [J].
Bremner, Andrew ;
Guy, Richard K. .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2006, 2 (02) :217-223
[3]  
Bremner A, 2006, ANN MATH INFORM, V33, P15
[4]  
Chern S., 2016, FORUM GEOM, V16, P25
[5]  
Coins E.H., 2006, ROCKY MOUNTAIN J MAT, V36, P1511
[6]   ELLIPTIC CURVES COMING FROM HERON TRIANGLES [J].
Dujella, Andrej ;
Peral, Juan Carlos .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2014, 44 (04) :1145-1160
[7]   MY FAVORITE ELLIPTIC CURVE - A TALE OF 2 TYPES OF TRIANGLES [J].
GUY, RK .
AMERICAN MATHEMATICAL MONTHLY, 1995, 102 (09) :771-781
[8]  
Izadi F., 2017, ROCKY MOUNT IN PRESS
[9]   ELLIPTIC CURVES ARISING FROM BRAHMAGUPTA QUADRILATERALS [J].
Izadi, Farzali ;
Khoshnam, Foad ;
Moody, Dustin ;
Zargar, Arman Shamsi .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2014, 90 (01) :47-56
[10]   Mordell-Weil ranks of families of elliptic curves associated to Pythagorean triples [J].
Naskrecki, Bartosz .
ACTA ARITHMETICA, 2013, 160 (02) :159-183