Geometric Population Inversion in Rabi Oscillation

被引:2
作者
Liu, Dongyu [1 ]
Chen, Z. Q. [1 ]
Wang, Z. S. [1 ,2 ]
机构
[1] Jiangxi Normal Univ, Coll Phys & Commun Elect, Nanchang 330022, Jiangxi, Peoples R China
[2] Key Lab Optoelect & Telecommun Jiangxi, Nanchang 330022, Jiangxi, Peoples R China
关键词
Geometric phase; Population inversion; Rabi oscillation; TOPOLOGICAL PHASE; BERRYS PHASE; QUANTUM; ENTANGLEMENT; STATE;
D O I
10.1007/s10773-009-0228-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The relations between geometric phases and population inversion in Rabi oscillation are investigated for all possible cases. The results show that the population inverse is an elliptically symmetric distribution as a function of the difference of geometric phases so as resiliently to rebut certain types of computational and experiment errors in geometric quantum computation.
引用
收藏
页码:497 / 505
页数:9
相关论文
共 42 条
[1]   PHASE-CHANGE DURING A CYCLIC QUANTUM EVOLUTION [J].
AHARONOV, Y ;
ANANDAN, J .
PHYSICAL REVIEW LETTERS, 1987, 58 (16) :1593-1596
[2]  
[Anonymous], 1956, P INDIAN ACAD SCI A
[3]   CONDITIONAL QUANTUM DYNAMICS AND LOGIC GATES [J].
BARENCO, A ;
DEUTSCH, D ;
EKERT, A ;
JOZSA, R .
PHYSICAL REVIEW LETTERS, 1995, 74 (20) :4083-4086
[4]   Hidden symmetries in the energy levels of excitonic 'artificial atoms' [J].
Bayer, M ;
Stern, O ;
Hawrylak, P ;
Fafard, S ;
Forchel, A .
NATURE, 2000, 405 (6789) :923-926
[5]   Quantum information and computation [J].
Bennett, CH ;
DiVincenzo, DP .
NATURE, 2000, 404 (6775) :247-255
[7]   OBSERVATION OF TOPOLOGICAL PHASE BY USE OF A LASER INTERFEROMETER [J].
BHANDARI, R ;
SAMUEL, J .
PHYSICAL REVIEW LETTERS, 1988, 60 (13) :1211-1213
[8]   Coherent optical control of the quantum state of a single quantum dot [J].
Bonadeo, NH ;
Erland, J ;
Gammon, D ;
Park, D ;
Katzer, DS ;
Steel, DG .
SCIENCE, 1998, 282 (5393) :1473-1476
[9]   Rabi oscillations in the excitonic ground-state transition of InGaAs quantum dots [J].
Borri, P ;
Langbein, W ;
Schneider, S ;
Woggon, U ;
Sellin, RL ;
Ouyang, D ;
Bimberg, D .
PHYSICAL REVIEW B, 2002, 66 (08) :1-4
[10]   Differential geometry on SU(3) with applications to three state systems [J].
Byrd, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (11) :6125-6136