Existence and Uniqueness of Positive Solutions for Boundary Value Problems of Fractional Differential Equations

被引:30
作者
Afshari, Hojjat [1 ]
Marasi, Hamidreza [2 ]
Aydi, Hassen [3 ,4 ]
机构
[1] Univ Bonab, Basic Sci Fac, Dept Math, Bonab, Iran
[2] Univ Tabriz, Fac Math Sci, Dept Appl Math, Tabriz, Iran
[3] Univ Dammam, Dept Math, Coll Educ Jubail, PO 12020, Ind Jubail 31961, Saudi Arabia
[4] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
关键词
Fractional differential equation; normal cone; boundary value problem; mixed monotone operator; FIXED-POINT THEOREMS; METRIC-SPACES;
D O I
10.2298/FIL1709675A
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By using fixed point results of mixed monotone operators on cones and the concept of phi-concavity, we study the existence and uniqueness of positive solutions for some nonlinear fractional differential equations via given boundary value problems. Some concrete examples are also provided illustrating the obtained results.
引用
收藏
页码:2675 / 2682
页数:8
相关论文
共 21 条
[1]   Coupled Fixed Points for Meir-Keeler Contractions in Ordered Partial Metric Spaces [J].
Abdeljawad, Thabet ;
Aydi, Hassen ;
Karapinar, Erdal .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2012, 2012
[2]  
[Anonymous], 2006, THEORY APPL FRACTION
[3]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[4]  
[Anonymous], 1988, APPL ANAL
[5]  
Aydi H., 2012, J APPL MATH, V2012
[6]   Coupled coincidence point results on generalized distance in ordered cone metric spaces [J].
Aydi, Hassen ;
Karapinar, Erdal ;
Mustafa, Zead .
POSITIVITY, 2013, 17 (04) :979-993
[7]   Tripled coincidence fixed point results for Boyd-Wong and Matkowski type contractions [J].
Aydi, Hassen ;
Karapinar, Erdal ;
Radenovic, Stojan .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2013, 107 (02) :339-353
[8]   Coupled fixed point results for (ψ, φ)-weakly contractive mappings in ordered G-metric spaces [J].
Aydi, Hassen ;
Postolache, Mihai ;
Shatanawi, Wasfi .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 63 (01) :298-309
[9]   On the solution set for a class of sequential fractional differential equations [J].
Baleanu, Dumitru ;
Mustafa, Octavian G. ;
Agarwal, Ravi P. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (38)
[10]  
Benchohra M, 2010, BULL MATH ANAL APPL, V2, P7