Strategies to Reduce the Expert Supervision Required for Deep Learning-Based Segmentation of Histopathological Images

被引:19
|
作者
Van Eycke, Yves-Remi [1 ,2 ]
Foucart, Adrien [2 ]
Decaestecker, Christine [1 ,2 ]
机构
[1] Univ Libre Bruxelles, Ctr Microscopy & Mol Imaging CMMI, Digital Image Anal Pathol DIAPath, Charleroi, Belgium
[2] Univ Libre Bruxelles, LISA, Ecole Polytech Bruxelles, Brussels, Belgium
关键词
histopathology; deep learning; image segmentation; image annotation; data augmentation; generative adversarial networks; transfer learning; weak supervision; CONVOLUTIONAL NEURAL-NETWORKS; CANCER; CLASSIFICATION; PATHOLOGY;
D O I
10.3389/fmed.2019.00222
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The emergence of computational pathology comes with a demand to extract more and more information from each tissue sample. Such information extraction often requires the segmentation of numerous histological objects (e.g., cell nuclei, glands, etc.) in histological slide images, a task for which deep learning algorithms have demonstrated their effectiveness. However, these algorithms require many training examples to be efficient and robust. For this purpose, pathologists must manually segment hundreds or even thousands of objects in histological images, i.e., a long, tedious and potentially biased task. The present paper aims to review strategies that could help provide the very large number of annotated images needed to automate the segmentation of histological images using deep learning. This review identifies and describes four different approaches: the use of immunohistochemical markers as labels, realistic data augmentation, Generative Adversarial Networks (GAN), and transfer learning. In addition, we describe alternative learning strategies that can use imperfect annotations. Adding real data with high-quality annotations to the training set is a safe way to improve the performance of a well configured deep neural network. However, the present review provides new perspectives through the use of artificially generated data and/or imperfect annotations, in addition to transfer learning opportunities.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Robust deep learning-based semantic organ segmentation in hyperspectral images
    Seidlitz, Silvia
    Sellner, Jan
    Odenthal, Jan
    Oezdemir, Berkin
    Studier-Fischer, Alexander
    Knoedler, Samuel
    Ayala, Leonardo
    Adler, Tim J.
    Kenngott, Hannes G.
    Tizabi, Minu
    Wagner, Martin
    Nickel, Felix
    Mueller-Stich, Beat P.
    Maier-Hein, Lena
    MEDICAL IMAGE ANALYSIS, 2022, 80
  • [32] Deep Learning-Based Detection and Segmentation for BVS Struts in IVOCT Images
    Cao, Yihui
    Lu, Yifeng
    Jin, Qinhua
    Jing, Jing
    Chen, Yundai
    Li, Jianan
    Zhu, Rui
    INTRAVASCULAR IMAGING AND COMPUTER ASSISTED STENTING AND LARGE-SCALE ANNOTATION OF BIOMEDICAL DATA AND EXPERT LABEL SYNTHESIS, 2018, 11043 : 55 - 63
  • [33] Deep Learning-Based Segmentation Method for Brain Tumor in MR Images
    Xiao, Zhe
    Huang, Ruohan
    Ding, Yi
    Lan, Tian
    Dong, RongFeng
    Qin, Zhiguang
    Zhang, Xinjie
    Wang, Wei
    2016 IEEE 6TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL ADVANCES IN BIO AND MEDICAL SCIENCES (ICCABS), 2016,
  • [34] Classifying histopathological images of oral squamous cell carcinoma using deep transfer learning
    Panigrahi, Santisudha
    Nanda, Bhabani Sankar
    Bhuyan, Ruchi
    Kumar, Kundan
    Ghosh, Susmita
    Swarnkar, Tripti
    HELIYON, 2023, 9 (03)
  • [35] Segmentation of Nucleus in Histopathological Images Using Deep Learning Architectures
    Ayaz, Ogun
    Usta, Hamdullah
    Bilgin, Gokhan
    TIP TEKNOLOJILERI KONGRESI (TIPTEKNO'21), 2021,
  • [36] Breast Cancer Histopathological Images Segmentation Using Deep Learning
    Drioua, Wafaa Rajaa
    Benamrane, Nacera
    Sais, Lakhdar
    SENSORS, 2023, 23 (17)
  • [37] A survey on recent trends in deep learning for nucleus segmentation from histopathology images
    Basu, Anusua
    Senapati, Pradip
    Deb, Mainak
    Rai, Rebika
    Dhal, Krishna Gopal
    EVOLVING SYSTEMS, 2024, 15 (01) : 203 - 248
  • [38] Accurate and robust deep learning-based segmentation of the prostate clinical target volume in ultrasound images
    Karimi, Davood
    Zeng, Qi
    Mathur, Prateek
    Avinash, Apeksha
    Mandavi, Sara
    Spadinger, Ingrid
    Abolmaesumi, Purang
    Salcudean, Septimiu E.
    MEDICAL IMAGE ANALYSIS, 2019, 57 : 186 - 196
  • [39] Deep Learning on Histopathological Images for Colorectal Cancer Diagnosis: A Systematic Review
    Davri, Athena
    Birbas, Effrosyni
    Kanavos, Theofilos
    Ntritsos, Georgios
    Giannakeas, Nikolaos
    Tzallas, Alexandros T.
    Batistatou, Anna
    DIAGNOSTICS, 2022, 12 (04)
  • [40] Deep learning-based semantic segmentation for morphological fractography
    Tang, Keke
    Zhang, Peng
    Zhao, Yindun
    Zhong, Zheng
    ENGINEERING FRACTURE MECHANICS, 2024, 303