Strategies to Reduce the Expert Supervision Required for Deep Learning-Based Segmentation of Histopathological Images

被引:19
|
作者
Van Eycke, Yves-Remi [1 ,2 ]
Foucart, Adrien [2 ]
Decaestecker, Christine [1 ,2 ]
机构
[1] Univ Libre Bruxelles, Ctr Microscopy & Mol Imaging CMMI, Digital Image Anal Pathol DIAPath, Charleroi, Belgium
[2] Univ Libre Bruxelles, LISA, Ecole Polytech Bruxelles, Brussels, Belgium
关键词
histopathology; deep learning; image segmentation; image annotation; data augmentation; generative adversarial networks; transfer learning; weak supervision; CONVOLUTIONAL NEURAL-NETWORKS; CANCER; CLASSIFICATION; PATHOLOGY;
D O I
10.3389/fmed.2019.00222
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The emergence of computational pathology comes with a demand to extract more and more information from each tissue sample. Such information extraction often requires the segmentation of numerous histological objects (e.g., cell nuclei, glands, etc.) in histological slide images, a task for which deep learning algorithms have demonstrated their effectiveness. However, these algorithms require many training examples to be efficient and robust. For this purpose, pathologists must manually segment hundreds or even thousands of objects in histological images, i.e., a long, tedious and potentially biased task. The present paper aims to review strategies that could help provide the very large number of annotated images needed to automate the segmentation of histological images using deep learning. This review identifies and describes four different approaches: the use of immunohistochemical markers as labels, realistic data augmentation, Generative Adversarial Networks (GAN), and transfer learning. In addition, we describe alternative learning strategies that can use imperfect annotations. Adding real data with high-quality annotations to the training set is a safe way to improve the performance of a well configured deep neural network. However, the present review provides new perspectives through the use of artificially generated data and/or imperfect annotations, in addition to transfer learning opportunities.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Transfer learning based deep CNN for segmentation and detection of mitoses in breast cancer histopathological images
    Wahab, Noorul
    Khan, Asifullah
    Lee, Yeon Soo
    MICROSCOPY, 2019, 68 (03) : 216 - 233
  • [22] Deep learning-based classification and segmentation for scalpels
    Baiquan Su
    Qingqian Zhang
    Yi Gong
    Wei Xiu
    Yang Gao
    Lixin Xu
    Han Li
    Zehao Wang
    Shi Yu
    Yida David Hu
    Wei Yao
    Junchen Wang
    Changsheng Li
    Jie Tang
    Li Gao
    International Journal of Computer Assisted Radiology and Surgery, 2023, 18 : 855 - 864
  • [23] Deep learning-based classification and segmentation for scalpels
    Su, Baiquan
    Zhang, Qingqian
    Gong, Yi
    Xiu, Wei
    Gao, Yang
    Xu, Lixin
    Li, Han
    Wang, Zehao
    Yu, Shi
    Hu, Yida David
    Yao, Wei
    Wang, Junchen
    Li, Changsheng
    Tang, Jie
    Gao, Li
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2023, 18 (05) : 855 - 864
  • [24] Deep learning-based segmentation for disease identification
    Mzoughi, Olfa
    Yahiaoui, Itheri
    ECOLOGICAL INFORMATICS, 2023, 75
  • [25] A deep learning-based approach to automatic proximal femur segmentation in quantitative CT images
    Yu Deng
    Ling Wang
    Chen Zhao
    Shaojie Tang
    Xiaoguang Cheng
    Hong-Wen Deng
    Weihua Zhou
    Medical & Biological Engineering & Computing, 2022, 60 : 1417 - 1429
  • [26] A deep learning-based algorithm for 2-D cell segmentation in microscopy images
    Al-Kofahi, Yousef
    Zaltsman, Alla
    Graves, Robert
    Marshall, Will
    Rusu, Mirabela
    BMC BIOINFORMATICS, 2018, 19
  • [27] A deep learning-based approach to automatic proximal femur segmentation in quantitative CT images
    Deng, Yu
    Wang, Ling
    Zhao, Chen
    Tang, Shaojie
    Cheng, Xiaoguang
    Deng, Hong-Wen
    Zhou, Weihua
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2022, 60 (05) : 1417 - 1429
  • [28] Deep learning-based instance segmentation of cracks from shield tunnel lining images
    Huang, Hongwei
    Zhao, Shuai
    Zhang, Dongming
    Chen, Jiayao
    STRUCTURE AND INFRASTRUCTURE ENGINEERING, 2022, 18 (02) : 183 - 196
  • [29] Deep learning-based three-dimensional segmentation of the prostate on computed tomography images
    Shahedi, Maysam
    Halicek, Martin
    Dormer, James D.
    Schuster, David M.
    Fei, Baowei
    JOURNAL OF MEDICAL IMAGING, 2019, 6 (02)
  • [30] Deep learning-based semantic segmentation of remote sensing images: a review
    Lv, Jinna
    Shen, Qi
    Lv, Mingzheng
    Li, Yiran
    Shi, Lei
    Zhang, Peiying
    FRONTIERS IN ECOLOGY AND EVOLUTION, 2023, 11