Feature selection for automatic analysis of emotional response based on nonlinear speech modeling suitable for diagnosis of Alzheimer's disease

被引:20
作者
Lopez-de-Ipina, K. [1 ]
Alonso-Hernandez, J. B. [2 ]
Sole-Casals, J. [3 ]
Travieso-Gonzalez, C. M. [2 ]
Ezeiza, A. [1 ]
Faundez-Zanuy, M. [4 ]
Calvo, P. M. [1 ]
Beitia, B. [5 ]
机构
[1] Univ Basque Country UPV EHU, Syst Engn & Automat Dept, Donostia San Sebastian 20008, Spain
[2] Univ Las Palmas Gran Canaria, IDeTIC, Inst Desarrollo Tecnol & Innovac Comunicac IDeTIC, Las Palmas Gran Canaria, Spain
[3] Univ Vic Cent Univ Catalonia, Data & Signal Proc Res Grp, Vic, Spain
[4] Escola Univ Politecn Mataro UPC, Barcelona, Spain
[5] Univ Basque Country UPV EHU, Dept Math, Leioa, Spain
关键词
Emotional response; Automatic speech analysis; Emotion recognition; Non-linear modeling; Fractal dimension; Emotional temperature; FRACTAL APPROACH; DEMENTIA; RECOGNITION; DIMENSION;
D O I
10.1016/j.neucom.2014.05.083
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Alzheimer's disease (AD) is the most common type of dementia among the elderly. This work is part of a larger study that aims to identify novel technologies and biomarkers or features for the early detection of AD and its degree of severity. The diagnosis is made by analyzing several biomarkers and conducting a variety of tests (although only a post-mortem examination of the patients' brain tissue is considered to provide definitive confirmation). Non-invasive intelligent diagnosis techniques would be a very valuable diagnostic aid. This paper concerns the Automatic Analysis of Emotional Response (AAER) in spontaneous speech based on classical and new emotional speech features: Emotional Temperature (ET) and fractal dimension (FD). This is a pre-clinical study aiming to validate tests and biomarkers for future diagnostic use. The method has the great advantage of being non-invasive, low cost, and without any side effects. The AAER shows very promising results for the definition of features useful in the early diagnosis of AD. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:392 / 401
页数:10
相关论文
共 52 条
  • [31] Lopez-de-Ipina K., 2013, P IEEE 17 INT C INT
  • [32] Lopez-de-Ipina K., 2013, AUROMATIC DIAGNOSIS, DOI [10.1007/s12559-1013, DOI 10.1007/S12559-1013]
  • [33] On the Selection of Non-Invasive Methods Based on Speech Analysis Oriented to Automatic Alzheimer Disease Diagnosis
    Lopez-de-Ipina, Karmele
    Alonso, Jesus-Bernardino
    Manuel Travieso, Carlos
    Sole-Casals, Jordi
    Egiraun, Harkaitz
    Faundez-Zanuy, Marcos
    Ezeiza, Aitzol
    Barroso, Nora
    Ecay-Torres, Miriam
    Martinez-Lage, Pablo
    Martinez de Lizardui, Unai
    [J]. SENSORS, 2013, 13 (05): : 6730 - 6745
  • [34] Fractal dimensions of speech sounds: Computation and application to automatic speech recognition
    Maragos, P
    Potamianos, A
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1999, 105 (03) : 1925 - 1932
  • [35] Martinez F., 2003, P NOLISP 2003
  • [36] McKahnn G., 1984, CLIN DIAGNOSIS AD RE, V24, P939
  • [37] The diagnosis of dementia due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease
    McKhann, Guy M.
    Knopman, David S.
    Chertkow, Howard
    Hyman, Bradley T.
    Jack, Clifford R., Jr.
    Kawas, Claudia H.
    Klunk, William E.
    Koroshetz, Walter J.
    Manly, Jennifer J.
    Mayeux, Richard
    Mohs, Richard C.
    Morris, John C.
    Rossor, Martin N.
    Scheltens, Philip
    Carrillo, Maria C.
    Thies, Bill
    Weintraub, Sandra
    Phelps, Creighton H.
    [J]. ALZHEIMERS & DEMENTIA, 2011, 7 (03) : 263 - 269
  • [38] THE CLINICAL DEMENTIA RATING (CDR) - CURRENT VERSION AND SCORING RULES
    MORRIS, JC
    [J]. NEUROLOGY, 1993, 43 (11) : 2412 - 2414
  • [39] Nelwamondo F. D., 2006, WSEAS Transactions on Systems, V5, P1152
  • [40] Ouayoun M, 1999, ACTA OTO-LARYNGOL, V119, P261