A method for correcting the effect of specimen drift on coherent diffractive imaging

被引:2
作者
Martin, A. V. [1 ]
Allen, L. J. [1 ]
Ishizuka, K. [2 ]
机构
[1] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia
[2] HREM Res Inc, Saitama 3550055, Japan
基金
澳大利亚研究理事会;
关键词
Coherent diffractive imaging; Specimen drift; Phase retrieval; X-RAY-DIFFRACTION; PHASE RETRIEVAL; RECONSTRUCTION; ALGORITHMS; ELECTRON; MICROSCOPY; SIMULATION;
D O I
10.1016/j.ultramic.2010.01.014
中图分类号
TH742 [显微镜];
学科分类号
摘要
Coherent diffractive imaging involves the inversion of a diffraction pattern to find the wave function at the exit-surface plane of the specimen. It is a promising technique for imaging, for example, nanoparticles with electrons and biological molecules with X-rays. If the illumination is not a plane wave of infinite extent, then a relative drift between the illumination and the object introduces errors into the diffraction pattern; an issue which is often overlooked. This may be of particular importance for applications with electron microscopes which use nanoscale probes. Here we show that beams which are uniform over a sufficiently large region can be used to pose a phase retrieval problem that is immune from specimen drift, provided suitable analysis of the diffraction data is undertaken. The method only applies to objects contained within a support that is smaller than a uniform region of the beam. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:359 / 365
页数:7
相关论文
共 28 条
[1]  
Bracewell RB, 1965, The Fourier transform and its application
[2]   Femtosecond diffractive imaging with a soft-X-ray free-electron laser [J].
Chapman, Henry N. ;
Barty, Anton ;
Bogan, Michael J. ;
Boutet, Sebastien ;
Frank, Matthias ;
Hau-Riege, Stefan P. ;
Marchesini, Stefano ;
Woods, Bruce W. ;
Bajt, Sasa ;
Benner, Henry ;
London, Richard A. ;
Ploenjes, Elke ;
Kuhlmann, Marion ;
Treusch, Rolf ;
Duesterer, Stefan ;
Tschentscher, Thomas ;
Schneider, Jochen R. ;
Spiller, Eberhard ;
Moeller, Thomas ;
Bostedt, Christoph ;
Hoener, Matthias ;
Shapiro, David A. ;
Hodgson, Keith O. ;
Van der Spoel, David ;
Burmeister, Florian ;
Bergh, Magnus ;
Caleman, Carl ;
Huldt, Goesta ;
Seibert, M. Marvin ;
Maia, Filipe R. N. C. ;
Lee, Richard W. ;
Szoeke, Abraham ;
Timneanu, Nicusor ;
Hajdu, Janos .
NATURE PHYSICS, 2006, 2 (12) :839-843
[3]   High-resolution ab initio three-dimensional x-ray diffraction microscopy [J].
Chapman, HN ;
Barty, A ;
Marchesini, S ;
Noy, A ;
Hau-Riege, SR ;
Cui, C ;
Howells, MR ;
Rosen, R ;
He, H ;
Spence, JCH ;
Weierstall, U ;
Beetz, T ;
Jacobsen, C ;
Shapiro, D .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2006, 23 (05) :1179-1200
[4]   Electron diffractive imaging of nano-objects using a guided method with a dynamic support [J].
Dronyak, Roman ;
Liang, Keng S. ;
Stetsko, Yuri P. ;
Lee, Ting-Kuo ;
Feng, Chi-Kai ;
Tsai, Jin-Sheng ;
Chen, Fu-Rong .
APPLIED PHYSICS LETTERS, 2009, 95 (11)
[5]   Electron nanodiffraction using sharply focused parallel probes [J].
Dwyer, Christian ;
Kirkland, Angus I. ;
Hartel, Peter ;
Mueller, Heiko ;
Haider, Maximilian .
APPLIED PHYSICS LETTERS, 2007, 90 (15)
[6]   Phase retrieval by iterated projections [J].
Elser, V .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2003, 20 (01) :40-55
[7]   PHASE RETRIEVAL ALGORITHMS - A COMPARISON [J].
FIENUP, JR .
APPLIED OPTICS, 1982, 21 (15) :2758-2769
[8]   Towards sub-A atomic resolution electron diffraction imaging of metallic nanoclusters: A simulation study of experimental parameters and reconstruction algorithms [J].
Huang, W. J. ;
Jiang, B. ;
Sun, R. S. ;
Zuo, J. M. .
ULTRAMICROSCOPY, 2007, 107 (12) :1159-1170
[9]   Diffraction microscopy using 20 kV electron beam for multiwall carbon nanotubes [J].
Kamimura, Osamu ;
Kawahara, Kota ;
Doi, Takahisa ;
Dobashi, Takashi ;
Abe, Takashi ;
Gohara, Kazutoshi .
APPLIED PHYSICS LETTERS, 2008, 92 (02)
[10]  
Kirkland E., 1998, Advanced computing in Electron Microscopy