Application of deep learning to auto -delineation of target volumes and organs at risk in radiotherapy

被引:0
|
作者
Chen, M. [1 ]
Wu, S. [1 ]
Zhao, W. [2 ]
Zhou, Y. [1 ]
Zhou, Y. [1 ]
Wang, G. [1 ]
机构
[1] Bengbu Med Coll, Affiliated Hosp 1, Dept Radiat Oncol, Bengbu 233004, Anhui, Peoples R China
[2] Bengbu Med Coll, Bengbu 233030, Anhui, Peoples R China
来源
CANCER RADIOTHERAPIE | 2022年 / 26卷 / 03期
关键词
Radiotherapy; Target volumes; Organs at risk; Artificial intelligence; Deep learning; CONVOLUTIONAL NEURAL-NETWORK; BIG DATA; SEGMENTATION; HEAD; IMAGES; CT; VALIDATION; ONCOLOGY; ATLAS;
D O I
10.1016/icanrad.2021,08,020
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The technological advancement heralded the arrival of precision radiotherapy (RT), thereby increasing the therapeutic ratio and decreasing the side effects from treatment. Contour of target volumes (TV) and organs at risk (OARs) in RT is a complicated process. In recent years, automatic contouring of TV and OARs has rapidly developed due to the advances in deep learning (DL). This technology has the potential to save time and to reduce intra- or inter-observer variability. In this paper, the authors provide an overview of RT, introduce the concept of DL, summarize the data characteristics of the included literature, summarize the possible challenges for DL in the future, and discuss the possible research directions. (c) 2021 Les Auteurs. Publie par Elsevier Masson SAS au nom de Societe francaise de radiotherapie oncologique (SFRO). Cet article est publie en Open Access sous licence CC BY-NC-ND (http:// creativecommons,orgilicensesiby-nc-nd/4.0/).
引用
收藏
页码:494 / 501
页数:8
相关论文
共 50 条
  • [1] Development and Validation of a Deep Learning-Based Auto-Delineation of Target Volume and Organs at Risk in Pancreatic Cancer Radiotherapy
    Ren, G.
    Wang, Y.
    Wang, Y.
    Chen, Y.
    Chen, Q.
    Wang, S.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2023, 117 (02): : E482 - E483
  • [2] Development And Validation Of A Deep Learning Algorithm For Auto-Delineation Of Clinical Target Volume And Organs At Risk In Cervical Cancer Radiotherapy
    Zhikai, L.
    Guan, H.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2020, 108 (03): : E766 - E766
  • [3] Development and validation of a deep learning algorithm for auto-delineation of clinical target volume and organs at risk in cervical cancer radiotherapy
    Liu, Zhikai
    Liu, Xia
    Guan, Hui
    Zhen, Hongan
    Sun, Yuliang
    Chen, Qi
    Chen, Yu
    Wang, Shaobin
    Qiu, Jie
    RADIOTHERAPY AND ONCOLOGY, 2020, 153 : 172 - 179
  • [4] Use of auto-segmentation in the delineation of target volumes and organs at risk in head and neck
    Lim, Jia Yi
    Leech, Michelle
    ACTA ONCOLOGICA, 2016, 55 (07) : 799 - 806
  • [5] Delineation of clinical target volume and organs at risk in cervical cancer radiotherapy by deep learning networks
    Tian, Miao
    Wang, Hongqiu
    Liu, Xingang
    Ye, Yuyun
    Ouyang, Ganlu
    Shen, Yali
    Li, Zhiping
    Wang, Xin
    Wu, Shaozhi
    MEDICAL PHYSICS, 2023, 50 (10) : 6354 - 6365
  • [6] Development and validation of a deep reinforcement learning algorithm for auto-delineation of organs at risk in cervical cancer radiotherapy
    Li, Yucheng
    Qiu, Lingyun
    Shao, Kainan
    Jia, Yongshi
    Zhan, Wenming
    Ding, Jieni
    Chen, Weijun
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [7] Automatic delineation of the clinical target volume and organs at risk by deep learning for rectal cancer postoperative radiotherapy q
    Song, Ying
    Hu, Junjie
    Wu, Qiang
    Xu, Feng
    Nie, Shihong
    Zhao, Yaqin
    Bai, Sen
    Yi, Zhang
    RADIOTHERAPY AND ONCOLOGY, 2020, 145 : 186 - 192
  • [8] Deep Learning-Based Automatic Delineation of Target Volumes and Organs at Risk of Breast Cancer for On-Line Dosimetric Evaluation
    Dai, Z.
    Liang, X.
    Zhu, L.
    Tan, J.
    Zhang, B.
    Jian, W.
    Zhou, X.
    Li, F.
    Cai, J.
    Yang, W.
    Wang, X.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2021, 111 (03): : E109 - E110
  • [9] Comparing deep learning-based auto-segmentation of organs at risk and clinical target volumes to expert inter-observer variability in radiotherapy planning
    Wong, Jordan
    Fong, Allan
    McVicar, Nevin
    Smith, Sally
    Giambattista, Joshua
    Wells, Derek
    Kolbeck, Carter
    Giambattista, Jonathan
    Gondara, Lovedeep
    Alexander, Abraham
    RADIOTHERAPY AND ONCOLOGY, 2020, 144 : 152 - 158
  • [10] COMPARING DEEP LEARNING-BASED AUTO-SEGMENTATION OF ORGANS AT RISK AND CLINICAL TARGET VOLUMES TO EXPERT INTER-OBSERVER VARIABILITY IN RADIOTHERAPY PLANNING
    Wong, Jordan
    Fong, Allan
    McVicar, Nevin
    Smith, Sally
    Wells, Derek
    Giambattista, Joshua
    Gondara, Lovedeep
    Kolbeck, Carter
    Giambattista, Jonathan
    Alexander, Abraham
    RADIOTHERAPY AND ONCOLOGY, 2019, 139 : S54 - S54