Expression pattern and biochemical characteristics of a major epidermal retinol dehydrogenase

被引:29
作者
Markova, NG [1 ]
Pinkas-Sarafova, A [1 ]
Karaman-Jurukovska, N [1 ]
Jurukovski, V [1 ]
Simon, M [1 ]
机构
[1] SUNY Stony Brook, Sch Dent Med, Dept Oral Biol & Pathol, Living Skin Bank, Stony Brook, NY 11794 USA
关键词
retinol dehydrogenase/reductase; keratinocytes; retinoid signaling;
D O I
10.1016/S1096-7192(02)00226-3
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The biological functions of vitamin A in the epidermis are mediated by all-trans retinoic acid, which is biosynthesized from retinol in two oxidative reactions. The first step involves enzymatic conversion of retinol to retinaldehyde. The physiological significance and relative contributions of the various retinol dehydrogenases to the oxidation of retinol in epidermal cells remain unclear. We report the characterization of a retinol dehydrogenase/reductase of the SDR superfamily, hRoDH-E2, which is abundantly expressed in the epidermis, epidermal appendages and in cultured epidermal keratinocytes. Both in live keratinocytes and in isolated keratinocyte microsomes, where the enzyme normally localizes, hRoDH-E2 functions as a bona fide retinol dehydrogenase. In the prevailing oxidative reaction it recognizes both free- and CRBP-bound retinol, and shows preference toward NADP as a co-substrate. In comparison, hRoDH-E2 retinol dehydrogenase activity in the simple epithelial HEK 293 cells is much lower and in CHO cells is non-existent. hRoDH-E2 transcripts are distributed throughout the epidermal layers but are more abundant in the basal cells. In contrast, the protein is detected predominantly in the basal and the most differentiated living layers. Its synthesis is negatively regulated by retinoic acid. The biochemical properties and the differential expression of hRoDH-E2 in the strata where retinoic acid signaling is critical for epidermal homeostasis support a conclusion that hRoDH-E2 bears the characteristics of the major microsomal retinol dehydrogenase activity in the epidermal keratinocytes in physiological circumstances. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:119 / 135
页数:17
相关论文
共 73 条
[1]   RETINOIC ACID IMPROVES EPIDERMAL MORPHOGENESIS [J].
ASSELINEAU, D ;
BERNARD, BA ;
BAILLY, C ;
DARMON, M .
DEVELOPMENTAL BIOLOGY, 1989, 133 (02) :322-335
[2]  
Ausubel F.M., 1991, CURRENT PROTOCOLS MO
[3]   Evolution of 17β-hydroxysteroid dehydrogenases and their role in androgen, estrogen and retinoid action [J].
Baker, ME .
MOLECULAR AND CELLULAR ENDOCRINOLOGY, 2001, 171 (1-2) :211-215
[4]   Unusual evolution of 11 beta- and 17 beta-hydroxysteroid and retinol dehydrogenases [J].
Baker, ME .
BIOESSAYS, 1996, 18 (01) :63-70
[5]   Expression of multiple cytochrome P450 enzymes and multidrug resistance-associated transport proteins in human skin keratinocytes [J].
Baron, JM ;
Höller, D ;
Schiffer, R ;
Frankenberg, S ;
Neis, M ;
Merk, HF ;
Jugert, FK .
JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2001, 116 (04) :541-548
[6]   Expression cloning and characterization of oxidative 17 beta- and 3 alpha-hydroxysteroid dehydrogenases from rat and human prostate [J].
Biswas, MG ;
Russell, DW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (25) :15959-15966
[7]   CHARACTERIZATION OF A MICROSOMAL RETINOL DEHYDROGENASE - A SHORT-CHAIN ALCOHOL-DEHYDROGENASE WITH INTEGRAL AND PERIPHERAL MEMBRANE FORMS THAT INTERACTS WITH HOLO-CRBP (TYPE-I) [J].
BOERMAN, MHEM ;
NAPOLI, JL .
BIOCHEMISTRY, 1995, 34 (21) :7027-7037
[8]   Cellular retinol-binding protein-supported retinoic acid synthesis - Relative roles of microsomes and cytosol [J].
Boerman, MHEM ;
Napoli, JL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (10) :5610-5616
[9]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[10]   COMPILATION AND ANALYSIS OF EUKARYOTIC POL-II PROMOTER SEQUENCES [J].
BUCHER, P ;
TRIFONOV, EN .
NUCLEIC ACIDS RESEARCH, 1986, 14 (24) :10009-10026