Development and validation of bone-suppressed deep learning classification of COVID-19 presentation in chest radiographs

被引:4
|
作者
Lam, Ngo Fung Daniel [1 ]
Sun, Hongfei [1 ]
Song, Liming [1 ]
Yang, Dongrong [1 ]
Zhi, Shaohua [1 ]
Ren, Ge [1 ]
Chou, Pak Hei [1 ]
Wan, Shiu Bun Nelson [2 ]
Wong, Man Fung Esther [2 ]
Chan, King Kwong [3 ]
Tsang, Hoi Ching Hailey [3 ]
Kong, Feng-Ming [4 ]
Wang, Yi Xiang J. [5 ]
Qin, Jing [6 ]
Chan, Lawrence Wing Chi [1 ]
Ying, Michael [1 ]
Cai, Jing [1 ]
机构
[1] Hong Kong Polytech Univ, Dept Hlth Technol & Informat, Hong Kong, Peoples R China
[2] Pamela Youde Nethersole Eastern Hosp, Dept Radiol, Hong Kong, Peoples R China
[3] Queen Elizabeth Hosp, Dept Radiol & Imaging, Hong Kong, Peoples R China
[4] Univ Hong Kong, Li Ka Shing Fac Med, Dept Clin Oncol, Hong Kong, Peoples R China
[5] Chinese Univ Hong Kong, Dept Imaging & Intervent Radiol, Hong Kong, Peoples R China
[6] Hong Kong Polytech Univ, Sch Nursing, Hong Kong, Peoples R China
关键词
Classification; bone suppression; deep learning; chest radiography; coronavirus disease 2019 (COVID-19); CORONAVIRUS DISEASE 2019; LUNG NODULE; NETWORK; SYSTEM; CT;
D O I
10.21037/qims-21-791
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background: Coronavirus disease 2019 (COVID-19) is a pandemic disease. Fast and accurate diagnosis of COVID-19 from chest radiography may enable more efficient allocation of scarce medical resources and hence improved patient outcomes. Deep learning classification of chest radiographs may be a plausible step towards this. We hypothesize that bone suppression of chest radiographs may improve the performance of deep learning classification of COVID-19 phenomena in chest radiographs. Methods: Two bone suppression methods (Gusarev et al. and Rajaraman et al.) were implemented. The Gusarev and Rajaraman methods were trained on 217 pairs of normal and bone-suppressed chest radiographs from the X-ray Bone Shadow Suppression dataset (https://www.kaggle.com/hmchuong/xray-bone-shadowsupression). Two classifier methods with different network architectures were implemented. Binary classifier models were trained on the public RICORD-1c and RSNA Pneumonia Challenge datasets. An external test dataset was created retrospectively from a set of 320 COVID-19 positive patients from Queen Elizabeth Hospital (Hong Kong, China) and a set of 518 non-COVID-19 patients from Pamela Youde Nethersole Eastern Hospital (Hong Kong, China), and used to evaluate the effect of bone suppression on classifier performance. Classification performance, quantified by sensitivity, specificity, negative predictive value (NPV), accuracy and area under the receiver operating curve (AUC), for non-suppressed radiographs was compared to that for bone suppressed radiographs. Some of the pre-trained models used in this study are published at (https://github.com/danielnflam). Results: Bone suppression of external test data was found to significantly (P<0.05) improve AUC for one classifier architecture [from 0.698 (non-suppressed) to 0.732 (Rajaraman-suppressed)]. For the other classifier architecture, suppression did not significantly (P>0.05) improve or worsen classifier performance. Conclusions: Rajaraman suppression significantly improved classification performance in one classification architecture, and did not significantly worsen classifier performance in the other classifier architecture. This research could be extended to explore the impact of bone suppression on classification of different lung pathologies, and the effect of other image enhancement techniques on classifier performance.
引用
收藏
页码:3917 / 3931
页数:15
相关论文
共 50 条
  • [31] Detection and Severity Classification of COVID-19 in CT Images Using Deep Learning
    Qiblawey, Yazan
    Tahir, Anas
    Chowdhury, Muhammad E. H.
    Khandakar, Amith
    Kiranyaz, Serkan
    Rahman, Tawsifur
    Ibtehaz, Nabil
    Mahmud, Sakib
    Maadeed, Somaya Al
    Musharavati, Farayi
    Ayari, Mohamed Arselene
    DIAGNOSTICS, 2021, 11 (05)
  • [32] Deep Learning–Based Time-to-Death Prediction Model for COVID-19 Patients Using Clinical Data and Chest Radiographs
    Toshimasa Matsumoto
    Shannon Leigh Walston
    Michael Walston
    Daijiro Kabata
    Yukio Miki
    Masatsugu Shiba
    Daiju Ueda
    Journal of Digital Imaging, 2023, 36 : 178 - 188
  • [33] Predicting Prolonged Hospitalization and Supplemental Oxygenation in Patients with COVID-19 Infection from Ambulatory Chest Radiographs using Deep Learning
    Pyrros, Ayis
    Flanders, Adam Eugene
    Rodriguez-Fernandez, Jorge Mario
    Chen, Andrew
    Cole, Patrick
    Wenzke, Daniel
    Hart, Eric
    Harford, Samuel
    Horowitz, Jeanne
    Nikolaidis, Paul
    Muzaffar, Nadir
    Boddipalli, Viveka
    Nebhrajani, Jai
    Siddiqui, Nasir
    Willis, Melinda
    Darabi, Houshang
    Koyejo, Oluwasanmi
    Galanter, William
    ACADEMIC RADIOLOGY, 2021, 28 (08) : 1151 - 1158
  • [34] A Joint Classification Method for COVID-19 Lesions Based on Deep Learning and Radiomics
    Ma, Guoxiang
    Wang, Kai
    Zeng, Ting
    Sun, Bin
    Yang, Liping
    TOMOGRAPHY, 2024, 10 (09) : 1488 - 1500
  • [35] A deep learning-based framework for detecting COVID-19 patients using chest X-rays
    Asif, Sohaib
    Zhao, Ming
    Tang, Fengxiao
    Zhu, Yusen
    MULTIMEDIA SYSTEMS, 2022, 28 (04) : 1495 - 1513
  • [36] A deep learning computational approach for the classification of COVID-19 virus
    Perepi, Rajarajeswari
    Santhi, K.
    Chattopadhyay, Pratik
    Beg, Anwar O.
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2023, 11 (03) : 786 - 795
  • [37] Deep Learning Techniques for the Real Time Detection of Covid19 and Pneumonia using Chest Radiographs
    Panwar, Avnish
    Yadav, Rishika
    Mishra, Kishor
    Gupta, Siddharth
    IEEE EUROCON 2021 - 19TH INTERNATIONAL CONFERENCE ON SMART TECHNOLOGIES, 2021, : 250 - 253
  • [38] Deep Stacked Ensemble Learning Model for COVID-19 Classification
    Madhu, G.
    Bharadwaj, B. Lalith
    Boddeda, Rohit
    Vardhan, Sai
    Kautish, K. Sandeep
    Alnowibet, Khalid
    Alrasheedi, Adel F.
    Mohamed, Ali Wagdy
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 70 (03): : 5467 - 5486
  • [39] Augmenting Radiological Diagnostics with AI for Tuberculosis and COVID-19 Disease Detection: Deep Learning Detection of Chest Radiographs
    Kolhar, Manjur
    Al Rajeh, Ahmed M.
    Kazi, Raisa Nazir Ahmed
    DIAGNOSTICS, 2024, 14 (13)
  • [40] Analyzing inter-reader variability affecting deep ensemble learning for COVID-19 detection in chest radiographs
    Rajaraman, Sivaramakrishnan
    Sornapudi, Sudhir
    Alderson, Philip O.
    Folio, Les R.
    Antani, Sameer K.
    PLOS ONE, 2020, 15 (11):