A SCHWARZ-BASED DOMAIN DECOMPOSITION METHOD FOR THE DISPERSION EQUATION

被引:0
|
作者
Caldas Steinstraesser, Joao Guilherme [1 ]
Cienfuegos, Rodrigo [2 ]
Galaz Mora, Jose Daniel [2 ]
Rousseau, Antoine [3 ,4 ]
机构
[1] MERIC, Avda Apoquindo 2827, Santiago, Chile
[2] Pontificia Univ Catolica Chile, Dept Ingn Hidraul & Ambiental, Ave Vicuna Mackenna 4680, Santiago, Chile
[3] INRIA, Avda Apoquindo 2827, Santiago, Chile
[4] Inria Chile, Avda Apoquindo 2827, Santiago, Chile
来源
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION | 2018年 / 8卷 / 03期
关键词
Domain decomposition method; Schwarz method; transparent boundary conditions; KdV equation;
D O I
10.11948/2018.859
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a Schwarz-based domain decomposition method for solving a dispersion equation consisting on the linearized KdV equation without the advective term, using simple interface operators based on the exact transparent boundary conditions for this equation. An optimization process is performed for obtaining the approximation that provides the method with the fastest convergence to the solution of the monodomain problem.
引用
收藏
页码:859 / 872
页数:14
相关论文
共 50 条
  • [1] Wind field parallelization based on Schwarz alternating domain decomposition method
    Sanjuan, Gemma
    Margalef, Tomas
    Cortes, Ana
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2018, 82 : 565 - 574
  • [2] Fourier analysis of Schwarz domain decomposition methods for the biharmonic equation
    Shang, Yue-qiang
    He, Yin-nian
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2009, 30 (09) : 1177 - 1182
  • [3] Fourier analysis of Schwarz domain decomposition methods for the biharmonic equation
    尚月强
    何银年
    Applied Mathematics and Mechanics(English Edition), 2009, 30 (09) : 1177 - 1182
  • [4] Fourier analysis of Schwarz domain decomposition methods for the biharmonic equation
    Yue-qiang Shang
    Yin-nian He
    Applied Mathematics and Mechanics, 2009, 30 : 1177 - 1182
  • [5] A domain decomposition method for biharmonic equation
    Avudainayagam, A
    Vani, C
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2000, 40 (6-7) : 865 - 876
  • [6] A new domain decomposition method for an HJB equation
    Zhou, SZ
    Zhan, WP
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 159 (01) : 195 - 204
  • [7] Iterative methods for the Poisson equation in L-shape domain based on domain decomposition method
    Cheng, Xiao-liang
    Shaikh, Abdul Wasim
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 180 (01) : 393 - 400
  • [8] Integral Equation Domain Decomposition Method Based on the Out-of-Core Solver
    Liu, Yingyu
    Zhu, Mingda
    Lin, Zhongchao
    Zhao, Xunwang
    Zhai, Chang
    Hou, Peng
    2020 IEEE MTT-S INTERNATIONAL CONFERENCE ON NUMERICAL ELECTROMAGNETIC AND MULTIPHYSICS MODELING AND OPTIMIZATION (NEMO 2020), 2020,
  • [9] A Domain Decomposition Method Based on Simplified Volume-Surface Integral Equation
    Li, Xianjin
    Hu, Jun
    Chen, Yongpin
    Jiang, Ming
    Nie, Zaiping
    2018 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION & USNC/URSI NATIONAL RADIO SCIENCE MEETING, 2018, : 2399 - 2400
  • [10] Multilevel preconditioning technique for Schwarz waveform relaxation domain decomposition method for real- and imaginary-time nonlinear Schrodinger equation
    Antoine, X.
    Lorin, E.
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 336 : 403 - 417