Structure-property Relationship of Bio-Inspired Fibrous Materials

被引:10
作者
Koh, Ching Theng [1 ]
Low, Cheng Yee [2 ]
bin Yusof, Yusri [1 ]
机构
[1] Univ Tun Hussein Onn Malaysia, Fac Mech & Mfg Engn, Parit Raja 81310, Johor, Malaysia
[2] Univ Teknol MARA, Fac Mech Engn, Shah Alam 40450, Selangor, Malaysia
来源
2015 IEEE INTERNATIONAL SYMPOSIUM ON ROBOTICS AND INTELLIGENT SENSORS (IEEE IRIS2015) | 2015年 / 76卷
关键词
fibrous networks; bio-inspired materials; structure-property; finite element analysis; MECHANISMS; BEHAVIOR;
D O I
10.1016/j.procs.2015.12.278
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Natural fibrous tissues exhibit excellent mechanical properties and functional behavior. These functional behaviors are desired in many recent designs such as soft robotic devices and tissue engineering application. A sensible strategy to reproduce the functionality of natural materials is to mimic their microstructures, which are in the form of fibrous networks. However, literature on how fibrous networks affect the mechanical behavior in tissues is still lacking. In this study, the deformation of microscopic fibrous networks was investigated using finite element analysis. Fibrous networks were generated in MATLAB by constructing lines from random points with random angles. The fibers were then modeled by beam elements in finite element software ABAQUS. A noodle-like behavior resembling collagen fibers was defined. Finite element analysis showed that fibrous networks deformed in a non-continuum manner and allowed large deformation. Parameters such as fiber properties, fiber diameter, fiber and bonding density were found to significantly affect material stiffness. In conclusion, understanding the structure-property relationship provides useful guidelines for the creation of bio-inspired materials with desired stiffness. (c) 2015 Published by Elsevier B.V.
引用
收藏
页码:411 / 416
页数:6
相关论文
共 50 条
  • [41] Bio-inspired protective structures for marine applications
    Palomba, Giulia
    Hone, Timothy
    Taylor, David
    Crupi, Vincenzo
    BIOINSPIRATION & BIOMIMETICS, 2020, 15 (05)
  • [42] A Bio-inspired Knee Joint for Biped Robots
    Liu, Yixiang
    Zang, Xizhe
    Lin, Zhenkun
    Liu, Xinyu
    Zhao, Jie
    2016 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION (ICIA), 2016, : 1387 - 1391
  • [43] Frontiers in modeling and design of bio-inspired armors
    Signetti, Stefano
    Pugno, Nicola Maria
    FRONTIERS IN MATERIALS, 2015, 2
  • [44] Bio-inspired magnetic field sensing and processing
    Taylor, Brian K.
    Rutkowski, Adam J.
    PROCEEDINGS OF THE ION 2015 PACIFIC PNT MEETING, 2015, : 412 - 422
  • [45] On the improved ballistic performance of bio-inspired composites
    Abir, M. R.
    Tay, T. E.
    Lee, H. P.
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2019, 123 : 59 - 70
  • [46] Bio-inspired intent communication for automated vehicles
    Oudshoorn, Max
    de Winter, Joost
    Bazilinskyy, Pavlo
    Dodou, Dimitra
    TRANSPORTATION RESEARCH PART F-TRAFFIC PSYCHOLOGY AND BEHAVIOUR, 2021, 80 (80) : 127 - 140
  • [47] Bio-inspired ionic skins for smart medicine
    Lei, Zhouyue
    Xu, Wentao
    Zhang, Guogao
    SMART MEDICINE, 2023, 2 (01):
  • [48] Editorial: The future of biomaterials and bio-inspired materials: an early careers scientist's perspective
    Karaman, Ceren
    Kim, Min-Ho
    FRONTIERS IN MATERIALS, 2025, 12
  • [49] Development of Bio-inspired Monomer, Dopamine Acrylamide
    Matsuno, Masayoshi
    Kabata, Masayuki
    Akaishi, Ryoichi
    JOURNAL OF PHOTOPOLYMER SCIENCE AND TECHNOLOGY, 2020, 33 (04) : 457 - 460
  • [50] Structure-property relationships of a bio-based reactive diluent in a bio-based epoxy resin
    Maiorana, Anthony
    Yue, Liang
    Manas-Zloczower, Ica
    Gross, Richard
    JOURNAL OF APPLIED POLYMER SCIENCE, 2016, 133 (45)