Global and superlinear convergence of inexact Uzawa methods for saddle point problems with nondifferentiable mappings

被引:23
作者
Chen, XJ [1 ]
机构
[1] Univ New S Wales, Sch Math, Sydney, NSW 2052, Australia
关键词
saddle point; nonsmooth; Uzawa; Newton; inexact; inner/outer; convergence;
D O I
10.1137/S0036142995295789
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates inexact Uzawa methods for nonlinear saddle point problems. We prove that the inexact Uzawa method converges globally and superlinearly even if the derivative of the nonlinear mapping does not exist. We show that the Newton-type decomposition method for saddle point problems is a special case of a Newton-Uzawa method. We discuss applications of inexact Uzawa methods to separable convex programming problems and coupling of finite elements/boundary elements for nonlinear interface problems.
引用
收藏
页码:1130 / 1148
页数:19
相关论文
共 35 条
[1]  
[Anonymous], 1969, COLLECTION MATRICES
[2]  
AXELSSON O, 1994, SOLUTION NONLINEAR E
[3]  
BANK RE, 1990, NUMER MATH, V56, P645, DOI 10.1007/BF01405194
[4]   Analysis of the inexact Uzawa algorithm for saddle point problems [J].
Bramble, JH ;
Pasciak, JE ;
Vassilev, AT .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (03) :1072-1092
[5]  
Chen X, 1997, COMPUTING, V58, P281, DOI 10.1007/BF02684394
[6]   Convergence of Newton's method for singular smooth and nonsmooth equations using adaptive outer inverses [J].
Chen, XJ ;
Nashed, Z ;
Qi, LQ .
SIAM JOURNAL ON OPTIMIZATION, 1997, 7 (02) :445-462
[7]   A parallel inexact Newton method for stochastic programs with recourse [J].
Chen, XJ ;
Womersley, RS .
ANNALS OF OPERATIONS RESEARCH, 1996, 64 :113-141
[8]   Convergence of the BFGS method for LC(1) convex constrained optimization [J].
Chen, XJ .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1996, 34 (06) :2051-2063
[9]  
Ciarlet P., 1989, Introduction to Numerical Linear Algebra and Optimisation, DOI [DOI 10.1017/9781139171984, 10.1017/9781139171984]
[10]  
Clarke F. H., 1990, Optimization and nonsmooth analysis, DOI DOI 10.1137/1.9781611971309