ON STABLE CONSTANT MEAN CURVATURE SURFACES IN S2 x R AND H2 x R
被引:20
|
作者:
Souam, Rabah
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Diderot Paris 7, CNRS, UMR Geometrie & Dynam 7586, Inst Math Jussieu, F-75205 Paris 13, FranceUniv Paris Diderot Paris 7, CNRS, UMR Geometrie & Dynam 7586, Inst Math Jussieu, F-75205 Paris 13, France
Souam, Rabah
[1
]
机构:
[1] Univ Paris Diderot Paris 7, CNRS, UMR Geometrie & Dynam 7586, Inst Math Jussieu, F-75205 Paris 13, France
Constant mean curvature;
stability;
STABILITY;
HYPERSURFACES;
D O I:
10.1090/S0002-9947-10-04826-9
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We study the stability of immersed compact constant mean curvature (CMC) surfaces without boundary in some Riemannian 3-manifolds, in particular the Riemannian product spaces S-2 x R and H-2 x R. We prove that rotational CMC spheres in H-2 x R are all stable, whereas in S-2 x R there exists some value H-0 approximate to 0.18 such that rotational CMC spheres are stable for H >= H-0 and unstable for 0 < H < H-0. We show that a compact stable immersed CMC surface in S-2 x R is either a finite union of horizontal slices or a rotational sphere. In the more general case of an ambient manifold which is a simply connected conformally flat 3-manifold with nonnegative Ricci curvature we show that a closed stable immersed CMC surface is either a sphere or an embedded torus. Under the weaker assumption that the scalar curvature is nonnegative, we prove that a closed stable immersed CMC surface has genus at most three. In the case of H-2 x R we show that a closed stable immersed CMC surface is a rotational sphere if it has mean curvature H >= 1/root 2 and that it has genus at most one if 1/root 3 < H < 1/root 2 and genus at most two if H = 1/root 3.
机构:
Univ Paris Est, UFR Sci & technol, Dept Math, Lab Anal & Math Appl,UMR 8050, F-94010 Creteil, FranceUniv Paris Est, UFR Sci & technol, Dept Math, Lab Anal & Math Appl,UMR 8050, F-94010 Creteil, France
Mazet, Laurent
Rodriguez, M. Magdalena
论文数: 0引用数: 0
h-index: 0
机构:
Univ Granada, Dept Geometria & Topol, Granada 18071, SpainUniv Paris Est, UFR Sci & technol, Dept Math, Lab Anal & Math Appl,UMR 8050, F-94010 Creteil, France
Rodriguez, M. Magdalena
Rosenberg, Harold
论文数: 0引用数: 0
h-index: 0
机构:
Inst Matematica Pura & Aplicada, BR-22460320 Rio De Janeiro, BrazilUniv Paris Est, UFR Sci & technol, Dept Math, Lab Anal & Math Appl,UMR 8050, F-94010 Creteil, France