Resonances of periodic orbits in the Lorenz system

被引:6
作者
Algaba, Antonio [1 ]
Gamero, Estanislao [2 ]
Merino, Manuel [1 ]
Rodriguez-Luis, Alejandro J. [2 ]
机构
[1] Univ Huelva, Dept Matemat, Ctr Invest Fis Teor & Matemat FIMAT, Huelva 21071, Spain
[2] Univ Seville, Dept Matemat Aplicada 2, ES Ingenieros, Camino Descubrimientos S-N, Seville 41092, Spain
关键词
Lorenz equations; Torus bifurcation; Resonance; Arnold's tongue; Global bifurcation; TAKENS-BOGDANOV BIFURCATIONS; HOPF-BIFURCATION; HETEROCLINIC ORBITS; ARNOLDS TONGUES; CHEN; MANIFOLDS; EXISTENCE; FAMILY; CHAOS;
D O I
10.1007/s11071-016-2632-5
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Usually, the physical interest of the Lorenz system is restricted to the region where its three parameters are positive. However, this famous system appears, when , in the study of a thermosolutal convection model and in the analysis of traveling-wave solutions of the Maxwell-Bloch equations. In this context, a Takens-Bogdanov bifurcation of heteroclinic type becomes an important organizing center. It has been very recently shown that the periodic orbit born in the Hopf bifurcation of the origin undergoes a torus bifurcation. In this paper we perform a detailed numerical study of the resonances of periodic orbits in the three-parameter Lorenz system, when and . The combination of numerical continuation methods and Poincar, sections of the flow provides important information of how the resonances appear and evolve giving rise to a very rich dynamical and bifurcation scenario.
引用
收藏
页码:2111 / 2136
页数:26
相关论文
共 41 条
  • [1] A degenerate Hopf-saddle-node bifurcation analysis in a family of electronic circuits
    Algaba, A.
    Gamero, E.
    Garcia, C.
    Merino, M.
    [J]. NONLINEAR DYNAMICS, 2007, 48 (1-2) : 55 - 76
  • [2] Analysis of Hopf and Takens-Bogdanov bifurcations in a modified van der Pol-Duffing oscillator
    Algaba, A
    Freire, E
    Gamero, E
    Rodriguez-Luis, AJ
    [J]. NONLINEAR DYNAMICS, 1998, 16 (04) : 369 - 404
  • [3] Takens-Bogdanov bifurcations of equilibria and periodic orbits in the Lorenz system
    Algaba, A.
    Dominguez-Moreno, M. C.
    Merino, M.
    Rodriguez-Luis, A. J.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 30 (1-3) : 328 - 343
  • [4] Analysis of the T-point-Hopf bifurcation in the Lorenz system
    Algaba, A.
    Fernandez-Sanchez, F.
    Merino, M.
    Rodriguez-Luis, A. J.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 22 (1-3) : 676 - 691
  • [5] Takens-Bogdanov bifurcations of periodic orbits and Arnold's tongues in a three-dimensional electronic model
    Algaba, A
    Merino, M
    Rodríguez-Luis, AJ
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2001, 11 (02): : 513 - 531
  • [6] Algaba A, 1999, IEICE T FUND ELECTR, VE82A, P1714
  • [7] Algaba A., 2008, CHAOS, V18
  • [8] Resonances of periodic orbits in Rossler system in presence of a triple-zero bifurcation
    Algaba, Antonio
    Freire, Emilio
    Gamero, Estanislao
    Rodriguez-Luis, Alejandro J.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (06): : 1997 - 2008
  • [9] Study of the Hopf bifurcation in the Lorenz, Chen and Lu systems
    Algaba, Antonio
    Dominguez-Moreno, Maria C.
    Merino, Manuel
    Rodriguez-Luis, Alejandro J.
    [J]. NONLINEAR DYNAMICS, 2015, 79 (02) : 885 - 902
  • [10] Comment on "Existence of heteroclinic and homoclinic orbits in two different chaotic dynamical systems" [Appl. Math. Comput. 218 (2012) 11859-11870]
    Algaba, Antonio
    Fernandez-Sanchez, Fernando
    Merino, Manuel
    Rodriguez-Luis, Alejandro J.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 244 : 49 - 56