Study on fractional random differential equations with not instantaneous impulses

被引:0
|
作者
Harikrishnan, S. [1 ]
Kanagarajan, K. [2 ]
Elsayed, E. M. [3 ]
机构
[1] PPG Coll Arts & Sci, Dept Math, Coimbatore, Tamil Nadu, India
[2] Sri Ramakrishna Mission Vidyalaya Coll Arts & Sci, Dept Math, Coimbatore 641020, Tamil Nadu, India
[3] Mansoura Univ, Dept Math, Fac Sci, Mansoura 35516, Egypt
关键词
random differential equations; non-instantaneous impulse; fractional derivative; existence; stability;
D O I
10.32513/tmj/19322008127
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the existence of solution for not instantaneous impulsive fractional differential equations with random parameter. By using fixed point theorems, we establish sufficient conditions for the existence and uniqueness of solutions. Finally, generalized Ulam Hyers Rassias stable solution is also obtained.
引用
收藏
页码:117 / 126
页数:10
相关论文
共 50 条
  • [1] On the fractional differential equations with not instantaneous impulses
    Zhang, Xianmin
    Agarwal, Praveen
    Liu, Zuohua
    Zhang, Xianzhen
    Ding, Wenbin
    Ciancio, Armando
    OPEN PHYSICS, 2016, 14 (01): : 676 - 684
  • [2] On General Solution for Fractional Differential Equations with Not Instantaneous Impulses
    Zhang, Xianmin
    Zhang, Xianzhen
    Cao, Hui
    FUNDAMENTA INFORMATICAE, 2017, 151 (1-4) : 355 - 369
  • [3] Caputo Fractional Differential Equations with Non-Instantaneous Random Erlang Distributed Impulses
    Hristova, Snezhana
    Ivanova, Krasimira
    FRACTAL AND FRACTIONAL, 2019, 3 (02) : 1 - 15
  • [4] Caputo-Fabrizio fractional differential equations with instantaneous impulses
    Abbas, Said
    Benchohra, Mouffak
    Nieto, Juan J.
    AIMS MATHEMATICS, 2021, 6 (03): : 2932 - 2946
  • [5] NON-INSTANTANEOUS IMPULSES IN CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS
    Agarwal, Ravi
    Hristova, Snezhana
    O'Regan, Donal
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2017, 20 (03) : 595 - 622
  • [6] Non-Instantaneous Impulses in Caputo Fractional Differential Equations
    Ravi Agarwal
    Snezhana Hristova
    Donal O’Regan
    Fractional Calculus and Applied Analysis, 2017, 20 : 595 - 622
  • [7] Mild solution of fractional order differential equations with not instantaneous impulses
    Li, Pei-Luan
    Xu, Chang-Jin
    OPEN MATHEMATICS, 2015, 13 : 436 - 443
  • [8] Caputo–Fabrizio fractional differential equations with non instantaneous impulses
    Saïd Abbas
    Mouffak Benchohra
    Juan J. Nieto
    Rendiconti del Circolo Matematico di Palermo Series 2, 2022, 71 : 131 - 144
  • [9] Caputo-Fabrizio fractional differential equations with non instantaneous impulses
    Abbas, Said
    Benchohra, Mouffak
    Nieto, Juan J.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2022, 71 (01) : 131 - 144
  • [10] A remark on ψ-Hilfer fractional differential equations with non-instantaneous impulses
    Van Hoa Ngo
    O'Regan, Donal
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (06) : 3354 - 3368