Gap Property of Bi-Lipschitz Constants of Bi-Lipschitz Automorphisms on Self-similar Sets

被引:1
作者
Xi, Lifeng [1 ]
Xiong, Ying [2 ]
机构
[1] Zhejiang Wanli Univ, Inst Math, Ningbo 315100, Zhejiang, Peoples R China
[2] S China Univ Technol, Dept Math, Guangzhou 510641, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractal; Bi-Lipschitz automorphism; Self-similar set; HAUSDORFF DIMENSION; CANTOR SETS; EQUIVALENCE; FRACTALS;
D O I
10.1007/s11401-008-0350-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a given self-similar set E subset of R(d) satisfying the strong separation condition, let Aut(E) be the set of all bi-Lipschitz automorphisms on E. The authors prove that {f is an element of Aut(E) : blip(f) = 1} is a finite group, and the gap property of bi-Lipschitz constants holds, i.e., inf{blip(f) not equal 1: f is an element of Aut(E)} > 1, where lip(g) = sup(x,y is an element of Ex not equal y)vertical bar g(x)-g(y)/vertical bar x-y vertical bar and blip(g) = max(lip(g),lip(g(-1))).
引用
收藏
页码:211 / 218
页数:8
相关论文
共 14 条