Superregular breathers, characteristics of nonlinear stage of modulation instability induced by higher-order effects

被引:101
作者
Zhang, Jian-Hui [1 ]
Wang, Lei [1 ]
Liu, Chong [2 ,3 ]
机构
[1] North China Elect Power Univ, Dept Math & Phys, Beijing 102206, Peoples R China
[2] Northwest Univ, Sch Phys, Xian 710069, Shaanxi, Peoples R China
[3] Shaanxi Key Lab Theoret Phys Frontiers, Xian 710069, Shaanxi, Peoples R China
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2017年 / 473卷 / 2199期
基金
中国国家自然科学基金;
关键词
superregular breathers; modulation instability; nonlinear stage; state transition; higher-order effects; PEREGRINE SOLITON; WAVE SOLUTIONS; DISCRETENESS; GENERATION; EQUATIONS; TRAINS; FIBER;
D O I
10.1098/rspa.2016.0681
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We study the higher-order generalized nonlinear Schrodinger (NLS) equation describing the propagation of ultrashort optical pulse in optical fibres. By using Darboux transformation, we derive the superregular breather solution that develops from a small localized perturbation. This type of solution can be used to characterize the nonlinear stage of the modulation instability (MI) of the condensate. In particular, we show some novel characteristics of the nonlinear stage of MI arising from higherorder effects: (i) coexistence of a quasi-Akhmediev breather and a multipeak soliton; (ii) two multipeak solitons propagation in opposite directions; (iii) a beating pattern followed by two multipeak solitons in the same direction. It is found that these patterns generated from a small localized perturbation do not have the analogues in the standard NLS equation. Our results enrich Zakharov's theory of superregular breathers and could provide helpful insight on the nonlinear stage of MI in presence of the higherorder effects.
引用
收藏
页数:14
相关论文
共 62 条
[1]   Waves that appear from nowhere and disappear without a trace [J].
Akhmediev, N. ;
Ankiewicz, A. ;
Taki, M. .
PHYSICS LETTERS A, 2009, 373 (06) :675-678
[2]  
AKHMEDIEV NN, 1985, ZH EKSP TEOR FIZ+, V89, P1542
[3]   Solitary wave solutions for high dispersive cubic-quintic nonlinear Schrodinger equation [J].
Azzouzi, F. ;
Triki, H. ;
Mezghiche, K. ;
El Akrmi, A. .
CHAOS SOLITONS & FRACTALS, 2009, 39 (03) :1304-1307
[4]   OBSERVATION OF MODULATIONAL INSTABILITY IN A MULTICOMPONENT PLASMA WITH NEGATIVE-IONS [J].
BAILUNG, H ;
NAKAMURA, Y .
JOURNAL OF PLASMA PHYSICS, 1993, 50 :231-242
[5]   Observation of Peregrine Solitons in a Multicomponent Plasma with Negative Ions [J].
Bailung, H. ;
Sharma, S. K. ;
Nakamura, Y. .
PHYSICAL REVIEW LETTERS, 2011, 107 (25)
[6]   Sasa-Satsuma equation: Soliton on a background and its limiting cases [J].
Bandelow, U. ;
Akhmediev, N. .
PHYSICAL REVIEW E, 2012, 86 (02)
[7]   Baseband modulation instability as the origin of rogue waves [J].
Baronio, Fabio ;
Chen, Shihua ;
Grelu, Philippe ;
Wabnitz, Stefan ;
Conforti, Matteo .
PHYSICAL REVIEW A, 2015, 91 (03)
[8]   Vector Rogue Waves and Baseband Modulation Instability in the Defocusing Regime [J].
Baronio, Fabio ;
Conforti, Matteo ;
Degasperis, Antonio ;
Lombardo, Sara ;
Onorato, Miguel ;
Wabnitz, Stefan .
PHYSICAL REVIEW LETTERS, 2014, 113 (03)
[9]   DISINTEGRATION OF WAVE TRAINS ON DEEP WATER .1. THEORY [J].
BENJAMIN, TB ;
FEIR, JE .
JOURNAL OF FLUID MECHANICS, 1967, 27 :417-&
[10]   INSTABILITY OF PERIODIC WAVETRAINS IN NONLINEAR DISPERSIVE SYSTEMS [J].
BENJAMIN, TB .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1967, 299 (1456) :59-&