Generalized inverses and a block-rank equation

被引:29
作者
Thome, M
Wei, Y [1 ]
机构
[1] Fudan Univ, Dept Math, Shanghai 200433, Peoples R China
[2] Univ Politecn Valencia, Dept Matemat Aplicada, E-46071 Valencia, Spain
基金
中国国家自然科学基金;
关键词
rank equation; group inverse; jordan canonical form; reflexive generalized inverse;
D O I
10.1016/S0096-3003(02)00268-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a square matrix A of index 1, the block-rank equation rank [(A)(C) (B)(X)] = rank(A) is studied. Geometrical conditions are given to characterize the solution of this equation. Further, all matrices B and C are described for the solution X = A(#), where A(#) is the group inverse of A. In addition, we extend these results to reflexive generalized inverses. This contributes to a result recently obtained by Wei [SIAM J. Matrix Anal. Appl. 17 (1996) 7441 and it is a generalization of a result by Gross [Lin. Alg. Appl. 289 (1999) 127]. (C) 2002 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:471 / 476
页数:6
相关论文
共 13 条
[1]  
[Anonymous], 1971, GEN INVERSES MATRICE
[2]  
BENISRAEL A, 1974, GEN INVERSES THEORY
[3]  
BRAND L, 1962, MATH GAZ, V46, P203
[4]  
Bru R., 1998, Linear Multilinear Algebra, V45, P207
[5]   A CHARACTERIZATION OF THE MOORE-PENROSE INVERSE [J].
FIEDLER, M ;
MARKHAM, TL .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1993, 179 :129-133
[6]  
Gross J, 1999, LINEAR ALGEBRA APPL, V289, P127
[7]  
Marsaglia G., 1974, LINEAR MULTILINEAR A, V2, P269, DOI DOI 10.1080/03081087408817070
[8]   THE CONDITION OF A FINITE MARKOV-CHAIN AND PERTURBATION BOUNDS FOR THE LIMITING PROBABILITIES [J].
MEYER, CD .
SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1980, 1 (03) :273-283
[9]   ROLE OF GROUP GENERALIZED INVERSE IN THEORY OF FINITE MARKOV CHAINS [J].
MEYER, CD .
SIAM REVIEW, 1975, 17 (03) :443-464
[10]   On the perturbation of the group inverse and oblique projection [J].
Wei, YM .
APPLIED MATHEMATICS AND COMPUTATION, 1999, 98 (01) :29-42