Probabilistic Distillation of Quantum Coherence

被引:82
作者
Fang, Kun [1 ]
Wang, Xin [1 ]
Lami, Ludovico [2 ,3 ]
Regula, Bartosz [2 ,3 ]
Adesso, Gerardo [2 ,3 ]
机构
[1] Univ Technol Sydney, Fac Engn & Informat Technol, Ctr Quantum Software & Informat, Sydney, NSW 2007, Australia
[2] Univ Nottingham, Sch Math Sci, Univ Pk, Nottingham NG7 2RD, England
[3] Univ Nottingham, Ctr Math & Theoret Phys Quantum Nonequilibrium Sy, Univ Pk, Nottingham NG7 2RD, England
基金
欧洲研究理事会;
关键词
STRONG CONVERSE; ENTANGLEMENT;
D O I
10.1103/PhysRevLett.121.070404
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The ability to distill quantum coherence is pivotal for optimizing the performance of quantum technologies; however, such a task cannot always be accomplished with certainty. Here we develop a general framework of probabilistic distillation of quantum coherence in a one-shot setting, establishing fundamental limitations for different classes of free operations. We first provide a geometric interpretation for the maximal success probability, showing that under maximally incoherent operations (MIO) and dephasing-covariant incoherent operations (DIO) the problem can be simplified into efficiently computable semidefinite programs. Exploiting these results, we find that DIO and its subset of strictly incoherent operations have equal power in the probabilistic distillation of coherence from pure input states, while MIO are strictly stronger. We then prove a fundamental no-go result: Distilling coherence from any full-rank state is impossible even probabilistically. We further find that in some conditions the maximal success probability can vanish suddenly beyond a certain threshold in the distillation fidelity. Finally, we consider probabilistic coherence distillation assisted by a catalyst and demonstrate, with specific examples, its superiority to the unassisted and deterministic cases.
引用
收藏
页数:6
相关论文
共 47 条
[1]  
Aberg J, ARXIVQUANTPH0612146
[2]   Fluctuating States: What is the Probability of a Thermodynamical Transition? [J].
Alhambra, Alvaro M. ;
Oppenheim, Jonathan ;
Perry, Christopher .
PHYSICAL REVIEW X, 2016, 6 (04)
[3]  
[Anonymous], 1978, FOLGE
[4]  
Anshu A., ARXIV180404915
[5]   Quantifying Coherence [J].
Baumgratz, T. ;
Cramer, M. ;
Plenio, M. B. .
PHYSICAL REVIEW LETTERS, 2014, 113 (14)
[6]  
Ben-Israel A, 2003, CMS BOOKS MATH, DOI [10.1007/b97366, DOI 10.1007/B97366]
[7]   Purification of noisy entanglement and faithful teleportation via noisy channels [J].
Bennett, CH ;
Brassard, G ;
Popescu, S ;
Schumacher, B ;
Smolin, JA ;
Wootters, WK .
PHYSICAL REVIEW LETTERS, 1996, 76 (05) :722-725
[8]   Concentrating partial entanglement by local operations [J].
Bennett, CH ;
Bernstein, HJ ;
Popescu, S ;
Schumacher, B .
PHYSICAL REVIEW A, 1996, 53 (04) :2046-2052
[9]  
Bhatia R, 2007, PRINC SER APPL MATH, P1
[10]   The second laws of quantum thermodynamics [J].
Brandao, Fernando ;
Horodecki, Michal ;
Ng, Nelly ;
Oppenheim, Jonathan ;
Wehner, Stephanie .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (11) :3275-3279