Reconstruction of protein domain evolution using single-cell amplified genomes of uncultured choanoflagellates sheds light on the origin of animals

被引:27
作者
Lopez-Escardo, David [1 ,2 ]
Grau-Bove, Xavier [1 ,3 ,4 ]
Guillaumet-Adkins, Amy [5 ,6 ]
Gut, Marta [5 ,6 ]
Sieracki, Michael E. [7 ]
Ruiz-Trillo, Inaki [1 ,3 ,8 ]
机构
[1] Univ Pompeu Fabra, CSIC, Inst Biol Evolut, Passeig Maritim Barceloneta 37-49, Barcelona 08003, Catalonia, Spain
[2] CSIC, ICM, Passeig Maritim Barceloneta 37-49, Barcelona 08003, Catalonia, Spain
[3] Univ Barcelona, Dept Genet Microbiol & Estadist, E-08028 Barcelona, Catalonia, Spain
[4] Univ Liverpool Liverpool Sch Trop Med, Dept Vector Biol, Pembroke Pl, Liverpool L3 5QA, Merseyside, England
[5] BIST, Ctr Genom Regulat, CRG, CNAG, Barcelona 08028, Spain
[6] UPF, Barcelona 08003, Spain
[7] Natl Sci Fdn, Arlington, VA 22314 USA
[8] ICREA, Pg Lluis Companys 23, Barcelona 08010, Spain
基金
欧洲研究理事会;
关键词
protein domain evolution; choanoflagellates; animal multicellularity; single-cell genomics; MOLECULAR PHYLOGENY; ALIGNMENT; REVEALS; INSIGHTS; BACTERIA; PERFORMANCE; EUKARYOTES; DIVERSITY; ALGORITHM; RELATIVES;
D O I
10.1098/rstb.2019.0088
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Understanding the origins of animal multicellularity is a fundamental biological question. Recent genome data have unravelled the role that co-option of pre-existing genes played in the origin of animals. However, there were also some important genetic novelties at the onset of Metazoa. To have a clear understanding of the specific genetic innovations and how they appeared, we need the broadest taxon sampling possible, especially among early-branching animals and their unicellular relatives. Here, we take advantage of single-cell genomics to expand our understanding of the genomic diversity of choanoflagellates, the sister-group to animals. With these genomes, we have performed an updated and taxon-rich reconstruction of protein evolution from the Last Eukaryotic Common Ancestor (LECA) to animals. Our novel data re-defines the origin of some genes previously thought to be metazoan-specific, like the POU transcription factor, which we show appeared earlier in evolution. Moreover, our data indicate that the acquisition of new genes at the stem of Metazoa was mainly driven by duplications and protein domain rearrangement processes at the stem of Metazoa. Furthermore, our analysis allowed us to reveal protein domains that are essential to the maintenance of animal multicellularity. Our analyses also demonstrate the utility of single-cell genomics from uncultured taxa to address evolutionary questions. This article is part of a discussion meeting issue 'Single cell ecology'.
引用
收藏
页数:19
相关论文
共 104 条
  • [21] trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses
    Capella-Gutierrez, Salvador
    Silla-Martinez, Jose M.
    Gabaldon, Toni
    [J]. BIOINFORMATICS, 2009, 25 (15) : 1972 - 1973
  • [22] Molecular phylogeny of choanoflagellates, the sister group to Metazoa
    Carr, M.
    Leadbeater, B. S. C.
    Hassan, R.
    Nelson, M.
    Baldauf, S. L.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (43) : 16641 - 16646
  • [23] A six-gene phylogeny provides new insights into choanoflagellate evolution
    Carr, Martin
    Richter, Daniel J.
    Fozouni, Parinaz
    Smith, Timothy J.
    Jeuck, Alexandra
    Leadbeater, Barry S. C.
    Nitsche, Frank
    [J]. MOLECULAR PHYLOGENETICS AND EVOLUTION, 2017, 107 : 166 - 178
  • [24] Chance and necessity: the evolution of morphological complexity and diversity
    Carroll, SB
    [J]. NATURE, 2001, 409 (6823) : 1102 - 1109
  • [25] Phylogeny of choanozoa, apusozoa, and other protozoa and early eukaryote megaevolution
    Cavalier-Smith, T
    Chao, EEY
    [J]. JOURNAL OF MOLECULAR EVOLUTION, 2003, 56 (05) : 540 - 563
  • [26] Origin of animal multicellularity: precursors, causes, consequences-the choanoflagellate/sponge transition, neurogenesis and the Cambrian explosion
    Cavalier-Smith, Thomas
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2017, 372 (1713)
  • [27] Count: evolutionary analysis of phylogenetic profiles with parsimony and likelihood
    Csuroes, Miklos
    [J]. BIOINFORMATICS, 2010, 26 (15) : 1910 - 1912
  • [28] Transcription factor evolution in eukaryotes and the assembly of the regulatory toolkit in multicellular lineages
    de Mendoza, Alex
    Sebe-Pedros, Arnau
    Sestak, Martin Sebastijan
    Matejcic, Marija
    Torruella, Guifre
    Domazet-Loso, Tomislav
    Ruiz-Trillo, Inaki
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (50) : E4858 - E4866
  • [29] Eukaryotic plankton diversity in the sunlit ocean
    de Vargas, Colomban
    Audic, Stephane
    Henry, Nicolas
    Decelle, Johan
    Mahe, Frederic
    Logares, Ramiro
    Lara, Enrique
    Berney, Cedric
    Le Bescot, Noan
    Probert, Ian
    Carmichael, Margaux
    Poulain, Julie
    Romac, Sarah
    Colin, Sebastien
    Aury, Jean-Marc
    Bittner, Lucie
    Chaffron, Samuel
    Dunthorn, Micah
    Engelen, Stefan
    Flegontova, Olga
    Guidi, Lionel
    Horak, Ales
    Jaillon, Olivier
    Lima-Mendez, Gipsi
    Lukes, Julius
    Malviya, Shruti
    Morard, Raphael
    Mulot, Matthieu
    Scalco, Eleonora
    Siano, Raffaele
    Vincent, Flora
    Zingone, Adriana
    Dimier, Celine
    Picheral, Marc
    Searson, Sarah
    Kandels-Lewis, Stefanie
    Acinas, Silvia G.
    Bork, Peer
    Bowler, Chris
    Gorsky, Gabriel
    Grimsley, Nigel
    Hingamp, Pascal
    Iudicone, Daniele
    Not, Fabrice
    Ogata, Hiroyuki
    Pesant, Stephane
    Raes, Jeroen
    Sieracki, Michael E.
    Speich, Sabrina
    Stemmann, Lars
    [J]. SCIENCE, 2015, 348 (6237)
  • [30] The genetic and molecular basis of Fanconi anemia
    de Winter, Johan P.
    Joenje, Hans
    [J]. MUTATION RESEARCH-FUNDAMENTAL AND MOLECULAR MECHANISMS OF MUTAGENESIS, 2009, 668 (1-2) : 11 - 19