Nestin-positive mesenchymal stem cells favour the astroglial lineage in neural progenitors and stem cells by releasing active BMP4 -: art. no. 33

被引:71
作者
Wislet-Gendebien, S [2 ]
Bruyère, F
Hans, G
Leprince, P
Moonen, G
Rogister, B
机构
[1] CHU Liege, Dept Neurol, Sart Tilman Par Liege, Belgium
[2] Univ Liege, Ctr Cellular & Mol Neurobiol, Liege, Belgium
关键词
D O I
10.1186/1471-2202-5-33
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Background: Spontaneous repair is limited after CNS injury or degeneration because neurogenesis and axonal regrowth rarely occur in the adult brain. As a result, cell transplantation has raised much interest as potential treatment for patients with CNS lesions. Several types of cells have been considered as candidates for such cell transplantation and replacement therapies. Foetal brain tissue has already been shown to have significant effects in patients with Parkinson's disease. Clinical use of the foetal brain tissue is, however, limited by ethical and technical problems as it requires high numbers of grafted foetal cells and immunosuppression. Alternatively, several reports suggested that mesenchymal stem cells, isolated from adult bone marrow, are multipotent cells and could be used in autograft approach for replacement therapies. Results: In this study, we addressed the question of the possible influence of mesenchymal stem cells on neural stem cell fate. We have previously reported that adult rat mesenchymal stem cells are able to express nestin in defined culture conditions (in the absence of serum and after 25 cell population doublings) and we report here that nestin-positive (but not nestin-negative) mesenchymal stem cells are able to favour the astroglial lineage in neural progenitors and stem cells cultivated from embryonic striatum. The increase of the number of GFAP-positive cells is associated with a significant decrease of the number of Tujl- and O4-positive cells. Using quantitative RT-PCR, we demonstrate that mesenchymal stem cells express LIF, CNTF, BMP2 and BMP4 mRNAs, four cytokines known to play a role in astroglial fate decision. In this model, BMP4 is responsible for the astroglial stimulation and oligodendroglial inhibition, as 1) this cytokine is present in a biologically-active form only in nestin-positive mesenchymal stem cells conditioned medium and 2) anti-BMP4 antibodies inhibit the nestin-positive mesenchymal stem cells conditioned medium inducing effect on astrogliogenesis. Conclusions: When thinking carefully about mesenchymal stem cells as candidates for cellular therapy in neurological diseases, their effects on resident neural cell fate have to be considered.
引用
收藏
页数:12
相关论文
共 58 条
[1]   Converse control of oligodendrocyte and astrocyte lineage development by Sonic hedgehog in the chick spinal cord [J].
Agius, E ;
Soukkarieh, C ;
Danesin, C ;
Kan, P ;
Takebayashi, H ;
Soula, C ;
Cochard, P .
DEVELOPMENTAL BIOLOGY, 2004, 270 (02) :308-321
[2]  
Alvarez-Buylla A, 1998, J NEUROBIOL, V36, P105, DOI 10.1002/(SICI)1097-4695(199808)36:2<105::AID-NEU1>3.0.CO
[3]  
2-5
[4]   Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes [J].
Alvarez-Dolado, M ;
Pardal, R ;
Garcia-Vardugo, JM ;
Fike, JR ;
Lee, HO ;
Pfeffer, K ;
Lois, C ;
Morrison, SJ ;
Alvarez-Buylla, A .
NATURE, 2003, 425 (6961) :968-973
[5]   Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats - similarities to astrocyte grafts [J].
Azizi, SA ;
Stokes, D ;
Augelli, BJ ;
DiGirolamo, C ;
Prockop, DJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (07) :3908-3913
[6]   Bone morphogenetic proteins regulate the developmental program of human hematopoietic stem cells [J].
Bhatia, M ;
Bonnet, D ;
Wu, DM ;
Murdoch, B ;
Wrana, J ;
Gallacher, L ;
Dick, JE .
JOURNAL OF EXPERIMENTAL MEDICINE, 1999, 189 (07) :1139-1147
[7]   From marrow to brain: Expression of neuronal phenotypes in adult mice [J].
Brazelton, TR ;
Rossi, FMV ;
Keshet, GI ;
Blau, HM .
SCIENCE, 2000, 290 (5497) :1775-1779
[8]   Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats [J].
Chen, JL ;
Li, Y ;
Wang, L ;
Zhang, ZG ;
Lu, DY ;
Lu, M ;
Chopp, M .
STROKE, 2001, 32 (04) :1005-1011
[9]   Regulation of bone morphogenetic protein activity by pro domains and proprotein convertases [J].
Constam, DB ;
Robertson, EJ .
JOURNAL OF CELL BIOLOGY, 1999, 144 (01) :139-149
[10]   Peripheral nerve regeneration by bone marrow stromal cells [J].
Cuevas, P ;
Carceller, F ;
Dujovny, M ;
Garcia-Gómez, I ;
Cuevas, B ;
González-Corrochano, R ;
Diaz-González, D ;
Reimers, D .
NEUROLOGICAL RESEARCH, 2002, 24 (07) :634-638