Cdk2 Is Required for p53-Independent G2/M Checkpoint Control

被引:87
作者
Chung, Jon H. [1 ]
Bunz, Fred
机构
[1] Johns Hopkins Univ, Sch Med, Dept Radiat Oncol & Mol Radiat Sci, Baltimore, MD 21218 USA
关键词
S-PHASE CHECKPOINT; CYCLIN-DEPENDENT KINASES; DNA-DAMAGE CHECKPOINT; HUMAN CANCER-CELLS; IONIZING-RADIATION; MAMMALIAN-CELLS; SOMATIC-CELLS; CDC6; ATR; ACTIVATION;
D O I
10.1371/journal.pgen.1000863
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The activation of phase-specific cyclin-dependent kinases (Cdks) is associated with ordered cell cycle transitions. Among the mammalian Cdks, only Cdk1 is essential for somatic cell proliferation. Cdk1 can apparently substitute for Cdk2, Cdk4, and Cdk6, which are individually dispensable in mice. It is unclear if all functions of non-essential Cdks are fully redundant with Cdk1. Using a genetic approach, we show that Cdk2, the S-phase Cdk, uniquely controls the G(2)/M checkpoint that prevents cells with damaged DNA from initiating mitosis. CDK2-nullizygous human cells exposed to ionizing radiation failed to exclude Cdk1 from the nucleus and exhibited a marked defect in G(2)/M arrest that was unmasked by the disruption of P53. The DNA replication licensing protein Cdc6, which is normally stabilized by Cdk2, was physically associated with the checkpoint regulator ATR and was required for efficient ATR-Chk1-Cdc25A signaling. These findings demonstrate that Cdk2 maintains a balance of S-phase regulatory proteins and thereby coordinates subsequent p53-independent G(2)/M checkpoint activation.
引用
收藏
页数:11
相关论文
共 61 条
[1]   Cdc2-cyclin E complexes regulate the G1/S phase transition [J].
Aleem, E ;
Kiyokawa, H ;
Kaldis, P .
NATURE CELL BIOLOGY, 2005, 7 (08) :831-U93
[2]   Cell-specific responses to loss of cyclin-dependent kinases [J].
Berthet, C. ;
Kaldis, P. .
ONCOGENE, 2007, 26 (31) :4469-4477
[3]   Cdk2 knockout mice are viable [J].
Berthet, C ;
Aleem, E ;
Coppola, V ;
Tessarollo, L ;
Kaldis, P .
CURRENT BIOLOGY, 2003, 13 (20) :1775-1785
[4]   Combined loss of Cdk2 and Cdk4 results in embryonic lethality and Rb hypophosphorylation [J].
Berthet, Cyril ;
Klarmann, Kimberly D. ;
Hilton, Mary Beth ;
Suh, Hyung Chan ;
Keller, Jonathan R. ;
Kiyokawa, Hiroaki ;
Kaldis, Philipp .
DEVELOPMENTAL CELL, 2006, 10 (05) :563-573
[5]   CDC6:: from DNA replication to cell cycle checkpoints and oncogenesis [J].
Borlado, Luis R. ;
Mendez, Juan .
CARCINOGENESIS, 2008, 29 (02) :237-243
[6]   Requirement for p53 and p21 to sustain G2 arrest after DNA damage [J].
Bunz, F ;
Dutriaux, A ;
Lengauer, C ;
Waldman, T ;
Zhou, S ;
Brown, JP ;
Sedivy, JM ;
Kinzler, KW ;
Vogelstein, B .
SCIENCE, 1998, 282 (5393) :1497-1501
[7]   14-3-3σ is required to prevent mitotic catastrophe after DNA damage [J].
Chan, TA ;
Hermeking, H ;
Lengauer, C ;
Kinzler, KW ;
Vogelstein, B .
NATURE, 1999, 401 (6753) :616-620
[8]   ATR: an essential regulator of genome integrity [J].
Cimprich, Karlene A. ;
Cortez, David .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2008, 9 (08) :616-627
[9]   Human replication protein Cdc6 prevents mitosis through a checkpoint mechanism that implicates Chk1 [J].
Clay-Farrace, L ;
Pelizon, C ;
Santamaria, D ;
Pines, J ;
Laskey, RA .
EMBO JOURNAL, 2003, 22 (03) :704-712
[10]   ATR and ATRIP: Partners in checkpoint signaling [J].
Cortez, D ;
Guntuku, S ;
Qin, J ;
Elledge, SJ .
SCIENCE, 2001, 294 (5547) :1713-1716