Dromion-like structures in a cubic-quintic nonlinear Schrodinger equation using analytical methods

被引:21
|
作者
Muniyappan, A. [1 ]
Suruthi, A. [1 ]
Monisha, B. [1 ]
Sharon Leela, N. [1 ]
Vijaycharles, J. [2 ]
机构
[1] Theivanai Ammal Coll Women A, Dept Phys, Villupuram 605602, Tamil Nadu, India
[2] St Josephs Coll A, Dept Phys, Tiruchirappalli 620002, Tamil Nadu, India
关键词
Dromion-like structures; NLS equation; Analytical methods;
D O I
10.1007/s11071-021-06350-1
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We investigate the dromion-like excitations corresponding to intramolecular chain-like proteins. In the present work, the dromion-like excitations are described by using cubic-quintic nonlinear Schrodinger equation (CQNSE) governing the dynamics of proteins and we analytically analyze the velocity (v) of dromion-like structure compared with velocity (v(a)) of acoustical sound waves corresponding to the longitudinal vibrations of protein molecules. Our work is motivated by the effectiveness and powerful mathematical techniques such as modified extended tanh function method and sine-cosine function method for solving CQNSE to obtain dromion-like structures.
引用
收藏
页码:1533 / 1544
页数:12
相关论文
共 50 条
  • [41] Existence, stability, and scattering of bright vortices in the cubic-quintic nonlinear Schrodinger equation
    Caplan, R. M.
    Carretero-Gonzalez, R.
    Kevrekidis, P. G.
    Malomed, B. A.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2012, 82 (07) : 1150 - 1171
  • [42] Dispersive shock waves propagating in the cubic-quintic derivative nonlinear Schrodinger equation
    Kengne, E.
    Lakhssassi, A.
    Nguyen-Ba, T.
    Vaillancourt, R.
    CANADIAN JOURNAL OF PHYSICS, 2010, 88 (01) : 55 - 66
  • [43] New exact solutions to the high dispersive cubic-quintic nonlinear Schrodinger equation
    Xie, Yingying
    Yang, Zhaoyu
    Li, Lingfei
    PHYSICS LETTERS A, 2018, 382 (36) : 2506 - 2514
  • [44] On the existence of dark solitons in a cubic-quintic nonlinear Schrodinger equation with a periodic potential
    Torres, Pedro J.
    Konotop, Vladimir V.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 282 (01) : 1 - 9
  • [45] STABILITY OF EXACT SOLUTIONS OF THE CUBIC-QUINTIC NONLINEAR SCHRODINGER EQUATION WITH PERIODIC POTENTIAL
    Kengne, E.
    Vaillancourt, R.
    NONLINEAR OSCILLATIONS, 2011, 13 (04): : 569 - 583
  • [46] Traveling wave solutions of the generalized nonlinear Schrodinger equation with cubic-quintic nonlinearity
    Kudryashov, Nikolay A.
    OPTIK, 2019, 188 : 27 - 35
  • [47] Peregrine Solitons on a Periodic Background in the Vector Cubic-Quintic Nonlinear Schrodinger Equation
    Ye, Yanlin
    Bu, Lili
    Wang, Wanwan
    Chen, Shihua
    Baronio, Fabio
    Mihalache, Dumitru
    FRONTIERS IN PHYSICS, 2020, 8
  • [48] On the Existence of Bright Solitons in Cubic-Quintic Nonlinear Schrodinger Equation with Inhomogeneous Nonlinearity
    Belmonte-Beitia, Juan
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2008, 2008
  • [49] Pattern formation and competition in the regime of the conserved cubic-quintic nonlinear Schrodinger equation
    Long, T
    He, XT
    MODERN PHYSICS LETTERS B, 1998, 12 (22): : 943 - 954
  • [50] Criteria for existence and stability of soliton solutions of the cubic-quintic nonlinear Schrodinger equation
    Schürmann, HW
    Serov, VS
    PHYSICAL REVIEW E, 2000, 62 (02): : 2821 - 2826