Effect of Tempers on Electrochemical Corrosion Behavior of 7150 Aluminum Alloy Plate in Various Corrosive Media

被引:12
作者
Sun, Qingqing [1 ,2 ,3 ]
Hu, Jiugang [1 ]
Li, Jie [1 ]
Chen, Kanghua [2 ]
Dong, Pengxuan [2 ]
Liao, Xingzhi [2 ]
Yang, Yang [3 ]
机构
[1] Cent S Univ, Sch Chem & Chem Engn, Changsha 410083, Hunan, Peoples R China
[2] Cent S Univ, State Key Lab Powder Met, Changsha 410083, Hunan, Peoples R China
[3] Purdue Univ, Sch Chem Engn, W Lafayette, IN 47907 USA
基金
中国国家自然科学基金;
关键词
7150 Al alloy; Temper; Cyclic polarization; Potential; TEM; MG-CU ALLOY; INTERGRANULAR CORROSION; LOCALIZED CORROSION; STAINLESS-STEELS; AL-ALLOY; STRENGTH; CRACKING; MICROSTRUCTURE; REPASSIVATION; PRECIPITATION;
D O I
10.20964/2017.06.63
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The effect of various tempers (peak ageing T6, RRA T77, two-step ageing T76, and a novel three-step ageing T76 + T6) on electrochemical corrosion of 7150 Al alloy under three corrosive solutions has been investigated. Electrochemical results and corrosion morphologies show that the resistance to pitting corrosion, inter-granular corrosion (IGC) and exfoliation corrosion of alloys is in the following decreasing order: T76 + T6 > T76 > T77 > T6. As indicated by TEM, the corrosion behavior of each temper might depend on the size and spacing of grain boundary particles of alloys. Excellent consistence between electrochemical parameter and stress cracking corrosion resistance was observed. In addition, the pit transition potential and potential differences as criteria to assess Al alloy corrosion behavior were also discussed.
引用
收藏
页码:5363 / 5377
页数:15
相关论文
共 40 条
[1]  
[Anonymous], 1980, ELECTROCHEMICAL METH
[2]  
Cao CN., 2004, PRINCIPLE CORROSION
[3]   Effect of heat treatment on strength, exfoliation corrosion and electrochemical behavior of 7085 aluminum alloy [J].
Chen, Songyi ;
Chen, Kanghua ;
Peng, Guosheng ;
Jia, Le ;
Dong, Pengxuan .
MATERIALS & DESIGN, 2012, 35 :93-98
[4]   Effect of chloride concentration, pH and dissolved oxygen, on the repassivation of 6082-T6 Al alloy [J].
Cicolin, D. ;
Trueba, M. ;
Trasatti, S. P. .
ELECTROCHIMICA ACTA, 2014, 124 :27-35
[5]   The pit transition potential in the repassivation of aluminium alloys [J].
Comotti, Ilaria M. ;
Trueba, Monica ;
Trasatti, Stefano P. .
SURFACE AND INTERFACE ANALYSIS, 2013, 45 (10) :1575-1584
[6]   Structure-property correlations in Al 7050 and Al 7055 high-strength aluminum alloys [J].
Dixit, M. ;
Mishra, R. S. ;
Sankaran, K. K. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 478 (1-2) :163-172
[7]   Recent developments in advanced aircraft aluminium alloys [J].
Dursun, Tolga ;
Soutis, Costas .
MATERIALS & DESIGN, 2014, 56 :862-871
[8]   Effect of recrystallization on intergranular fracture and corrosion of Al-Zn-Mg-Cu-Zr alloy [J].
Fang, H. C. ;
Chao, H. ;
Chen, K. H. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 622 :166-173
[9]   Effect of Cr, Yb and Zr additions on localized corrosion of Al-Zn-Mg-Cu alloy [J].
Fang, H. C. ;
Chen, K. H. ;
Chen, X. ;
Chao, H. ;
Peng, G. S. .
CORROSION SCIENCE, 2009, 51 (12) :2872-2877
[10]   Corrosion behaviour of stainless steels in aqueous solutions of methanesulfonic acid [J].
Finsgar, Matjaz ;
Milosev, Ingrid .
CORROSION SCIENCE, 2010, 52 (07) :2430-2438