Cyclic Higgs bundles and the affine Toda equations

被引:20
作者
Baraglia, David [1 ]
机构
[1] Univ Adelaide, Sch Math Sci, Adelaide, SA 5005, Australia
关键词
Higgs bundles; Toda; Cyclic; Harmonic maps; SYSTEMS; SURFACES;
D O I
10.1007/s10711-014-0003-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a class of Higgs bundles called cyclic which lie in the Hitchin component of representations of a compact Riemann surface into the split real form of a simple Lie group. We then prove that such Higgs bundles correspond to a class of solutions to the affine Toda equations. This relationship is further explained in terms of lifts of harmonic maps.
引用
收藏
页码:25 / 42
页数:18
相关论文
共 17 条
[1]   GEOMETRY OF HIGGS AND TODA FIELDS ON RIEMANN SURFACES [J].
ALDROVANDI, E ;
FALQUI, G .
JOURNAL OF GEOMETRY AND PHYSICS, 1995, 17 (01) :25-48
[2]  
BOLTON J, 1995, J REINE ANGEW MATH, V459, P119
[3]  
Bolton J., 1994, ASPECTS OF MATH E, V23, P59
[4]  
Carter R., 2005, CAMBRIDGE STUDIES AD, V96
[5]   Harmonic maps and periodic Toda systems [J].
Doliwa, A .
JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (03) :1685-1691
[6]   Holomorphic curves and toda systems [J].
Doliwa, A .
LETTERS IN MATHEMATICAL PHYSICS, 1997, 39 (01) :21-32
[7]   NONLINEAR SIGMA-MODELS ON SPHERES AND TODA SYSTEMS [J].
DOLIWA, A ;
SYM, A .
PHYSICS LETTERS A, 1994, 185 (5-6) :453-460
[8]   LIE-GROUPS AND TEICHMULLER SPACE [J].
HITCHIN, NJ .
TOPOLOGY, 1992, 31 (03) :449-473
[9]  
HITCHIN NJ, 1987, P LOND MATH SOC, V55, P59