Robust Algorithms for Filtering and Parameter Optimization in Inverse Problems

被引:0
|
作者
Owusu, Robert K. A. [1 ]
机构
[1] NORIG, Dept Math Modelling & Appl IT Syst Engn, Kokkedal, Denmark
关键词
Tikhonov's regularization; singular value decomposition (SVD); orthogonal decomposition; inverse problems; ill-posed; statistical Bayesian; statistical maximum apriori; Wiener-Kalman filter; non-linear; Fredholm Integral; variational methods; parameter optimization; parameter estimation;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The focus of this paper is ill-posed inverse problems. We emphasized on the Tikhonov's functional form of regularization from both numerical and Statistical methods viewpoints. We further extended the concept of regularization to the Bayesian methods framework. The Bayesian paradigm provided a general unified framework to the ill-posed inverse problem. Due to the computational complexity in estimating the parameters of the Bayesian model, the variational methods approach was used as an alternative. The problem of parameter estimation in the Bayesian framework was reduced to an optimization problem through the variational methods approach. In effect, we showed that the optimum of the Bayesian unified approach for the ill-posed inverse problem corresponds to the optimum of the variational methods approach.
引用
收藏
页码:407 / 416
页数:10
相关论文
共 50 条
  • [41] Robust numerical algorithms based on analytic approximation for the solution of inverse problems in annular domains
    Jaoua, Mohamed
    Leblond, Juliette
    Mahjoub, Moncef
    Partington, Jonathan R.
    IMA JOURNAL OF APPLIED MATHEMATICS, 2009, 74 (04) : 481 - 506
  • [42] ERROR ANALYSIS ALGORITHMS FOR DISTRIBUTED PARAMETER FILTERING
    KUMAR, GRV
    SAGE, AP
    AUTOMATICA, 1972, 8 (03) : 363 - &
  • [43] Wavelet solution of the inverse parameter problems
    Hosei Univ, Tokyo, Japan
    IEEE Transactions on Magnetics, 1997, 33 (2 pt 2) : 1962 - 1965
  • [44] INVERSE PROBLEMS IN ATOMIC PARAMETER CALCULATIONS
    GORCHAKOV, LV
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1991, 34 (04): : 25 - 36
  • [45] Wavelet solution of the inverse parameter problems
    Doi, T
    Hayano, S
    Saito, Y
    IEEE TRANSACTIONS ON MAGNETICS, 1997, 33 (02) : 1962 - 1965
  • [46] Optimal Motorcycle Engine Mount Design Parameter Identification Using Robust Optimization Algorithms
    Younis, Adel
    AlKhatib, Fadi
    Dong, Zuomin
    ALGORITHMS, 2022, 15 (08)
  • [47] Needlet algorithms for estimation in inverse problems
    Kerkyacharian, Gerard
    Petrushev, Pencho
    Picard, Dominique
    Willer, Thomas
    ELECTRONIC JOURNAL OF STATISTICS, 2007, 1 : 30 - 76
  • [48] ALGORITHMS OF SOLVING INVERSE HYDROACOUSTICS PROBLEMS
    Kabanikhin, S. I.
    Shishlenin, M. A.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2011, 8 : C85 - C94
  • [49] Sparsity-Aware Robust Normalized Subband Adaptive Filtering Algorithms With Alternating Optimization of Parameters
    Yu, Yi
    Huang, Zongxin
    He, Hongsen
    Zakharov, Yuriy
    de Lamare, Rodrigo C.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2022, 69 (09) : 3934 - 3938
  • [50] The parameter dependence of the inverse function delayed model on the success rate of combinatorial optimization problems
    Sato, Akari
    Hayakawa, Yoshihiro
    Nakajima, Koji
    ELECTRONICS AND COMMUNICATIONS IN JAPAN PART II-ELECTRONICS, 2007, 90 (11): : 41 - 54