Integrative Biology of Diabetic Kidney Disease

被引:9
作者
Harder, Jennifer L. [1 ]
Hodgin, Jeffrey B. [2 ]
Kretzler, Matthias [1 ,3 ]
机构
[1] Univ Michigan, Dept Internal Med, Div Nephrol, 1560 MSRB 2,1150 W,Med Ctr Dr,SPC 5676, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Pathol, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Bioinformat & Computat Med, Ann Arbor, MI 48109 USA
基金
美国国家卫生研究院;
关键词
Diabetic kidney disease; Diabetic nephropathy; Deep phenotyping; Genome-phenome continuum; Systems biology; STAGE RENAL-DISEASE; SYSTEMS BIOLOGY; NEPHROPATHY; POLYMORPHISM; PATHWAY; SUSCEPTIBILITY; ASSOCIATION; PROTEOMICS; DIAGNOSIS; GENETICS;
D O I
10.1159/000439196
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Background: The leading cause of end-stage renal disease in the US is diabetic kidney disease (DKD). Despite significant efforts to improve outcomes in DKD, the impact on disease progression has been disappointing. This has prompted clinicians and researchers to search for alternative approaches to identify persons at risk, and to search for more effective therapies to halt progression of DKD. The identification of novel therapies is critically dependent on a more comprehensive understanding of the pathophysiology of DKD, specifically at the molecular level. A more expansive and exploratory view of DKD is needed to complement more traditional research approaches that have focused on single molecules. Summary: In recent years, sophisticated research methodologies have emerged within systems biology that should allow for a more comprehensive disease definition of DKD. Systems biology provides an interdisciplinary approach to describe complex interactions within biological systems, including how these interactions influence systems' functions and behaviors. Computational modeling of large, system-wide, quantitative data sets is used to generate molecular interaction pathways, such as metabolic and cell signaling networks. Key Messages: Importantly, the interpretation of data generated by systems biology tools requires integration with enhanced clinical research data and validation using model systems. Such an integrative biological approach has already generated novel insights into pathways and molecules involved in DKD. In this review, we highlight recent examples of how combining systems biology with traditional clinical and model research efforts results in an integrative biology approach that significantly adds to the understanding of the complex pathophysiology of DKD. (C) 2015 S. Karger AG, Basel
引用
收藏
页码:194 / 203
页数:10
相关论文
共 47 条
  • [1] Genetic Mapping in Human Disease
    Altshuler, David
    Daly, Mark J.
    Lander, Eric S.
    [J]. SCIENCE, 2008, 322 (5903) : 881 - 888
  • [2] An integrated map of genetic variation from 1,092 human genomes
    Altshuler, David M.
    Durbin, Richard M.
    Abecasis, Goncalo R.
    Bentley, David R.
    Chakravarti, Aravinda
    Clark, Andrew G.
    Donnelly, Peter
    Eichler, Evan E.
    Flicek, Paul
    Gabriel, Stacey B.
    Gibbs, Richard A.
    Green, Eric D.
    Hurles, Matthew E.
    Knoppers, Bartha M.
    Korbel, Jan O.
    Lander, Eric S.
    Lee, Charles
    Lehrach, Hans
    Mardis, Elaine R.
    Marth, Gabor T.
    McVean, Gil A.
    Nickerson, Deborah A.
    Schmidt, Jeanette P.
    Sherry, Stephen T.
    Wang, Jun
    Wilson, Richard K.
    Gibbs, Richard A.
    Dinh, Huyen
    Kovar, Christie
    Lee, Sandra
    Lewis, Lora
    Muzny, Donna
    Reid, Jeff
    Wang, Min
    Wang, Jun
    Fang, Xiaodong
    Guo, Xiaosen
    Jian, Min
    Jiang, Hui
    Jin, Xin
    Li, Guoqing
    Li, Jingxiang
    Li, Yingrui
    Li, Zhuo
    Liu, Xiao
    Lu, Yao
    Ma, Xuedi
    Su, Zhe
    Tai, Shuaishuai
    Tang, Meifang
    [J]. NATURE, 2012, 491 (7422) : 56 - 65
  • [3] [Anonymous], USRDS 2014 ANN DAT R
  • [4] [Anonymous], HUM GENET
  • [5] Urinary MicroRNA Profiling in the Nephropathy of Type 1 Diabetes
    Argyropoulos, Christos
    Wang, Kai
    McClarty, Sara
    Huang, David
    Bernardo, Jose
    Ellis, Demetrius
    Orchard, Trevor
    Galas, David
    Johnson, John
    [J]. PLOS ONE, 2013, 8 (01):
  • [6] Enhanced Expression of Janus Kinase-Signal Transducer and Activator of Transcription Pathway Members in Human Diabetic Nephropathy
    Berthier, Celine C.
    Zhang, Hongyru
    Schin, MaryLee
    Henger, Anna
    Nelson, Robert G.
    Yee, Berne
    Boucherot, Anissa
    Neusser, Matthias A.
    Cohen, Clemens D.
    Carter-Su, Christin
    Argetsinger, Lawrence S.
    Rastaldi, Maria P.
    Brosius, Frank C.
    Kretzler, Matthias
    [J]. DIABETES, 2009, 58 (02) : 469 - 477
  • [7] Urine haptoglobin levels predict early renal functional decline in patients with type 2 diabetes
    Bhensdadia, Nishant M.
    Hunt, Kelly J.
    Lopes-Virella, Maria F.
    Tucker, J. Michael
    Mataria, Mohammad R.
    Alge, Joseph L.
    Neely, Benjamin A.
    Janech, Michael G.
    Arthur, John M.
    [J]. KIDNEY INTERNATIONAL, 2013, 83 (06) : 1136 - 1143
  • [8] The need for early predictors of diabetic nephropathy risk - Is albumin excretion rate sufficient?
    Caramori, ML
    Fioretto, P
    Mauer, M
    [J]. DIABETES, 2000, 49 (09) : 1399 - 1408
  • [9] Association of apolipoprotein ε2 allele with diabetic nephropathy in Caucasian subjects with IDDM
    Chowdhury, TA
    Dyer, PH
    Kumar, S
    Gibson, SP
    Rowe, BR
    Davies, SJ
    Marshall, SM
    Morris, PJ
    Gill, GV
    Feeney, S
    Maxwell, P
    Savage, D
    Boulton, AJM
    Todd, JA
    Dunger, D
    Barnett, AH
    Bain, SC
    [J]. DIABETES, 1998, 47 (02) : 278 - 280
  • [10] Genome-wide SNP genotyping study using pooled DNA to identify candidate markers mediating susceptibility to end-stage renal disease attributed to Type 1 diabetes
    Craig, D. W.
    Millis, M. P.
    DiStefano, J. K.
    [J]. DIABETIC MEDICINE, 2009, 26 (11) : 1090 - 1098