Integrative Biology of Diabetic Kidney Disease

被引:9
作者
Harder, Jennifer L. [1 ]
Hodgin, Jeffrey B. [2 ]
Kretzler, Matthias [1 ,3 ]
机构
[1] Univ Michigan, Dept Internal Med, Div Nephrol, 1560 MSRB 2,1150 W,Med Ctr Dr,SPC 5676, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Pathol, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Bioinformat & Computat Med, Ann Arbor, MI 48109 USA
基金
美国国家卫生研究院;
关键词
Diabetic kidney disease; Diabetic nephropathy; Deep phenotyping; Genome-phenome continuum; Systems biology; STAGE RENAL-DISEASE; SYSTEMS BIOLOGY; NEPHROPATHY; POLYMORPHISM; PATHWAY; SUSCEPTIBILITY; ASSOCIATION; PROTEOMICS; DIAGNOSIS; GENETICS;
D O I
10.1159/000439196
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Background: The leading cause of end-stage renal disease in the US is diabetic kidney disease (DKD). Despite significant efforts to improve outcomes in DKD, the impact on disease progression has been disappointing. This has prompted clinicians and researchers to search for alternative approaches to identify persons at risk, and to search for more effective therapies to halt progression of DKD. The identification of novel therapies is critically dependent on a more comprehensive understanding of the pathophysiology of DKD, specifically at the molecular level. A more expansive and exploratory view of DKD is needed to complement more traditional research approaches that have focused on single molecules. Summary: In recent years, sophisticated research methodologies have emerged within systems biology that should allow for a more comprehensive disease definition of DKD. Systems biology provides an interdisciplinary approach to describe complex interactions within biological systems, including how these interactions influence systems' functions and behaviors. Computational modeling of large, system-wide, quantitative data sets is used to generate molecular interaction pathways, such as metabolic and cell signaling networks. Key Messages: Importantly, the interpretation of data generated by systems biology tools requires integration with enhanced clinical research data and validation using model systems. Such an integrative biological approach has already generated novel insights into pathways and molecules involved in DKD. In this review, we highlight recent examples of how combining systems biology with traditional clinical and model research efforts results in an integrative biology approach that significantly adds to the understanding of the complex pathophysiology of DKD. (C) 2015 S. Karger AG, Basel
引用
收藏
页码:194 / 203
页数:10
相关论文
共 47 条
[1]   Genetic Mapping in Human Disease [J].
Altshuler, David ;
Daly, Mark J. ;
Lander, Eric S. .
SCIENCE, 2008, 322 (5903) :881-888
[2]   An integrated map of genetic variation from 1,092 human genomes [J].
Altshuler, David M. ;
Durbin, Richard M. ;
Abecasis, Goncalo R. ;
Bentley, David R. ;
Chakravarti, Aravinda ;
Clark, Andrew G. ;
Donnelly, Peter ;
Eichler, Evan E. ;
Flicek, Paul ;
Gabriel, Stacey B. ;
Gibbs, Richard A. ;
Green, Eric D. ;
Hurles, Matthew E. ;
Knoppers, Bartha M. ;
Korbel, Jan O. ;
Lander, Eric S. ;
Lee, Charles ;
Lehrach, Hans ;
Mardis, Elaine R. ;
Marth, Gabor T. ;
McVean, Gil A. ;
Nickerson, Deborah A. ;
Schmidt, Jeanette P. ;
Sherry, Stephen T. ;
Wang, Jun ;
Wilson, Richard K. ;
Gibbs, Richard A. ;
Dinh, Huyen ;
Kovar, Christie ;
Lee, Sandra ;
Lewis, Lora ;
Muzny, Donna ;
Reid, Jeff ;
Wang, Min ;
Wang, Jun ;
Fang, Xiaodong ;
Guo, Xiaosen ;
Jian, Min ;
Jiang, Hui ;
Jin, Xin ;
Li, Guoqing ;
Li, Jingxiang ;
Li, Yingrui ;
Li, Zhuo ;
Liu, Xiao ;
Lu, Yao ;
Ma, Xuedi ;
Su, Zhe ;
Tai, Shuaishuai ;
Tang, Meifang .
NATURE, 2012, 491 (7422) :56-65
[3]  
[Anonymous], USRDS 2014 ANN DAT R
[4]  
[Anonymous], HUM GENET
[5]   Urinary MicroRNA Profiling in the Nephropathy of Type 1 Diabetes [J].
Argyropoulos, Christos ;
Wang, Kai ;
McClarty, Sara ;
Huang, David ;
Bernardo, Jose ;
Ellis, Demetrius ;
Orchard, Trevor ;
Galas, David ;
Johnson, John .
PLOS ONE, 2013, 8 (01)
[6]   Enhanced Expression of Janus Kinase-Signal Transducer and Activator of Transcription Pathway Members in Human Diabetic Nephropathy [J].
Berthier, Celine C. ;
Zhang, Hongyru ;
Schin, MaryLee ;
Henger, Anna ;
Nelson, Robert G. ;
Yee, Berne ;
Boucherot, Anissa ;
Neusser, Matthias A. ;
Cohen, Clemens D. ;
Carter-Su, Christin ;
Argetsinger, Lawrence S. ;
Rastaldi, Maria P. ;
Brosius, Frank C. ;
Kretzler, Matthias .
DIABETES, 2009, 58 (02) :469-477
[7]   Urine haptoglobin levels predict early renal functional decline in patients with type 2 diabetes [J].
Bhensdadia, Nishant M. ;
Hunt, Kelly J. ;
Lopes-Virella, Maria F. ;
Tucker, J. Michael ;
Mataria, Mohammad R. ;
Alge, Joseph L. ;
Neely, Benjamin A. ;
Janech, Michael G. ;
Arthur, John M. .
KIDNEY INTERNATIONAL, 2013, 83 (06) :1136-1143
[8]   The need for early predictors of diabetic nephropathy risk - Is albumin excretion rate sufficient? [J].
Caramori, ML ;
Fioretto, P ;
Mauer, M .
DIABETES, 2000, 49 (09) :1399-1408
[9]   Association of apolipoprotein ε2 allele with diabetic nephropathy in Caucasian subjects with IDDM [J].
Chowdhury, TA ;
Dyer, PH ;
Kumar, S ;
Gibson, SP ;
Rowe, BR ;
Davies, SJ ;
Marshall, SM ;
Morris, PJ ;
Gill, GV ;
Feeney, S ;
Maxwell, P ;
Savage, D ;
Boulton, AJM ;
Todd, JA ;
Dunger, D ;
Barnett, AH ;
Bain, SC .
DIABETES, 1998, 47 (02) :278-280
[10]   Genome-wide SNP genotyping study using pooled DNA to identify candidate markers mediating susceptibility to end-stage renal disease attributed to Type 1 diabetes [J].
Craig, D. W. ;
Millis, M. P. ;
DiStefano, J. K. .
DIABETIC MEDICINE, 2009, 26 (11) :1090-1098