Liouville equations from a variational point of view

被引:0
|
作者
Malchiodi, Andrea [1 ,2 ]
机构
[1] SISSA, Via Bonomea 265, I-34136 Trieste, Italy
[2] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
来源
PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL III | 2014年
关键词
Liouville equations; variational methods; conformal geometry; singular PDEs; BLOW-UP ANALYSIS; STATISTICAL-MECHANICS; CONFORMAL METRICS; COMPACT SURFACES; Q-CURVATURE; EXISTENCE; INEQUALITY; SYMMETRY; SOBOLEV; THEOREM;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
After discussing the role of Liouville equations in both Conformal Geometry and Mathematical Physics, we will explore some of their variational features. In particular we will show the role of the Moser-Trudinger inequality, as well as of some of its improved versions, in characterizing the Euler-Lagrange energy levels of the problems under interest. This description reduces the study of PDEs of Liouville type to topological properties of explicit finite-dimensional objects.
引用
收藏
页码:345 / 361
页数:17
相关论文
共 50 条
  • [31] ON VARIATIONAL AND TOPOLOGICAL METHODS IN NONLINEAR DIFFERENCE EQUATIONS
    Balanov, Zalman
    Garcia-Azpeitia, Carlos
    Krawcewicz, Wieslaw
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2018, 17 (06) : 2813 - 2844
  • [32] Variational Reflectance Estimation from Multi-view Images
    Jean Mélou
    Yvain Quéau
    Jean-Denis Durou
    Fabien Castan
    Daniel Cremers
    Journal of Mathematical Imaging and Vision, 2018, 60 : 1527 - 1546
  • [33] Variational Reflectance Estimation from Multi-view Images
    Melou, Jean
    Queau, Yvain
    Durou, Jean-Denis
    Castan, Fabien
    Cremers, Daniel
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2018, 60 (09) : 1527 - 1546
  • [34] A Liouville Theorem for the Euler Equations in the Plane
    Hamel, Francois
    Nadirashvili, Nikolai
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2019, 233 (02) : 599 - 642
  • [35] Liouville Theorems for Fractional Parabolic Equations
    Chen, Wenxiong
    Wu, Leyun
    ADVANCED NONLINEAR STUDIES, 2021, 21 (04) : 939 - 958
  • [36] Liouville Systems of Mean Field Equations
    Lin, Chang-Shou
    MILAN JOURNAL OF MATHEMATICS, 2011, 79 (01) : 81 - 94
  • [37] The geometry of variational equations
    Krupková, O
    GLOBAL ANALYSIS AND APPLIED MATHEMATICS, 2004, 729 : 19 - 38
  • [38] Displacement interpolations from a Hamiltonian point of view
    Lee, Paul W. Y.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 265 (12) : 3163 - 3203
  • [39] Applications of variational methods to Sturm-Liouville boundary-value problem for fourth-order impulsive differential equations
    Tian, Yu
    Liu, Xianbin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2014, 37 (01) : 95 - 105
  • [40] Nonlinear difference equations investigated via critical point methods
    Bonanno, Gabriele
    Candito, Pasquale
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (09) : 3180 - 3186